首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   10篇
林业   21篇
农学   16篇
  58篇
综合类   24篇
农作物   19篇
水产渔业   8篇
畜牧兽医   107篇
园艺   3篇
植物保护   18篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   3篇
  2017年   8篇
  2016年   4篇
  2015年   8篇
  2014年   8篇
  2013年   7篇
  2012年   14篇
  2011年   13篇
  2010年   6篇
  2009年   10篇
  2008年   21篇
  2007年   18篇
  2006年   11篇
  2005年   17篇
  2004年   18篇
  2003年   11篇
  2002年   13篇
  2001年   12篇
  2000年   15篇
  1999年   5篇
  1998年   3篇
  1997年   4篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   6篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1985年   1篇
  1977年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1958年   1篇
  1926年   1篇
排序方式: 共有274条查询结果,搜索用时 921 毫秒
101.
  • ? At present, the production of wood composites mainly relies on the petrochemical-based and formaldehyde-based adhesives such as phenol-formaldehyde (PF) resins and urea-formaldehyde (UF) resins, which are non-renewable and therefore ultimately limited in supply.
  • ? This paper concerns the decay resistance of wood products bonded with a new, environment-friendly adhesive derived from abundant and renewable cornstarch and tannin. To improve the total resistance of the composite against both Coriolus versicolor and Coniophora puteana rot fungi, borax (di-sodium tetraborate) was added in proportions of 0.5%, 1% and 2% (w/w) to the cornstarch-tannin adhesives.
  • ? The results show that increasing the concentration of borax in the adhesive decreased the mechanical properties of the composite. The best way to avoid this problem was to use wood impregnated with borax.
  • ? Biodegradation studies were conducted on new composites, first without any treatment, followed by borax at 0.5% aqueous solution treatment. The results show that wood impregnated with borax, in the presence of tannin and sodium hydroxide in the adhesive improves the total resistance of the wood composite against both Coriolus versicolor and Coniophora puteana rot fungi.
  •   相似文献   
    102.
    The Conservation Reserve Enhancement Program (CREP) targets high-priority conservation needs (e.g., water quality, wildlife habitat) by paying landowners an annual rental rate to remove environmentally sensitive or agriculturally unproductive lands from rowcrop production, and then implement conservation practices on these lands. This study examined motivations of South Dakota landowners for enrolling in the James River Basin CREP. All 517 newly enrolled landowners were mailed a questionnaire in 2014 measuring demographics, behaviors, opinions, and motivations (60% response rate). Cluster analysis of 10 motivations for enrolling identified three motivation groups (wildlife = 40%, financial = 35%, environmental = 25%). The financial group had the youngest mean age (62 years), followed by the wildlife (65) and environmental groups (68). Among respondents, 43% favored the public access requirement of this CREP with the environmental group most in favor. Understanding landowner enrollment motivations and decision criteria will assist in strategies (e.g., financial incentives, increasing yield via habitat restoration) for increasing future participation.  相似文献   
    103.
    104.
    The role earthworms play in soil fertility is under increasing scientific scrutiny, especially in light of the fact that farmers are seeking to reduce soil tillage. However, there are many discrepancies in earthworm sampling methods. The aim of this study is to compare the efficiency of three chemical expellants (formaldehyde, commercial ‘hot’ mustard and allyl isothiocyanate, abbreviated AITC), with two sampling methods: (i) a simple method that consisted in spreading an expellant solution on the soil and retrieving earthworms that emerged at the soil surface, and (ii) a combined method that consisted in applying a chemical to expel earthworms and then hand-sorting the remaining earthworms from the block of soil. Sampling efficiency was measured in terms of earthworm density and biomass, for endogeic and anecic earthworms.With the simple method, a higher density of earthworms was sampled using formaldehyde and AITC than with mustard. Formaldehyde, AITC and mustard expelled not significantly different biomasses of 47.7, 31.9 and 20.5 g m?2, respectively, on average over the three plots. The combined method did not yield a significantly different density or biomass with the different chemicals.Formaldehyde is toxic and commercial ‘hot’ mustard is difficult to standardise and inefficient when used without hand-sorting. Accounting for the accuracy of the sampling methods as well as the toxicity of the chemicals to users and soil organisms, AITC appears to be a reliable and promising chemical expellant whether or not in combination with hand-sorting. Its use would be a step towards standardizing earthworm sampling methods.  相似文献   
    105.
    Inbreeding has detrimental effects on a number of economically important traits. W iggans et al. (1995) estimated inbreeding depression of ?29 kg, ?1.08 kg and ?0.97 kg for each 1% increase of inbreeding for the traits milk, fat and protein yield, respectively, across several dairy cattle breeds. For post-weaning gain in Hereford cattle, the depression was ?0.24 kg (G engler et al. 1998). For the number of piglets born alive, 21-day litter weight, and days to 104.5 kg, it was ?0.023, ?0.052 and 0.21, respectively (C ulbertson et al. 1998). Inbreeding also adversely impacts reproductive traits, such as delayed puberty, reduced conception rates, higher likelihood of losing established pregnancies, increased mortality of calves and lowered bull fertility (Y oung et al. 1969). National genetic evaluations involve animals with incomplete pedigrees. Regular inbreeding algorithms (RA) based on the definition of W right (1922), such as those by Q uaas (1976), calculate the inbreeding of animals with at least one parent missing as zero. Even if an animal has both parents known, its inbreeding will be underestimated if some of its ancestors are unidentified. If the proportion of missing parents is large, the inbreeding trend in a population could be seriously underestimated. Subsequently, losses from inbreeding would be underestimated, and steps to slow the increase of inbreeding, such as using sires that are less related to the general population or mating less-related animals (T oro and P erez -E nciso , 1990; G rundy et al. 1994; M euwissen and S onneson 1998; V an R aden and S mith 1999), may be delayed. In particular, use of a mating system can result in matings adjusted for both inbreeding and dominance (M isztal et al. 1999). In populations that use AI substantially, unidentified parents may not differ genetically from identified parents, on average. Therefore the real average inbreeding in animals with unidentified parent(s) may be similar to their contemporaries with both parents known. V an R aden (1992) proposed an algorithm (VRA), where the inbreeding of animals whose parent(s) are unknown is equal to the mean inbreeding of their contemporaries with known parents. Contemporaries are stratified along unknown parent groups (UPG). VRA has been applied to a few US dairy breeds (V an R aden 1992; W iggans et al. 1995). The calculated inbreeding for the youngest Holstein animals was 3.7% with RA and increased to 4.2% with VRA (V an R aden 1992). The increase was small because the number of unidentified animals was small. However, the performance of VRA in recovering inbreeding lost for a range of incomplete pedigrees has not been evaluated. The objectives of this study were (i) to determine average inbreeding coefficients when pedigrees are increasingly more incomplete; (ii) to assess the efficacy of VRA in recovering these inbreeding coefficients; and (iii) to determine the mean inbreeding using the two inbreeding algorithms in a large beef population.  相似文献   
    106.
    Timothy (Phleum pratense L.) is an important forage grass used for pasture, hay and silage in regions with cool and humid growth seasons. Harvesting conditions could reduce its nutritive value, particularly with extended wilting periods. To understand how daytime or night‐time wilting influences the nutritive value of timothy, this study investigated the metabolism of non‐structural carbohydrates, including fructan and starch, together with total soluble protein and amino acid patterns in timothy plants harvested at two maturity stages (heading and anthesis) and wilted under controlled conditions for 24 h at two temperatures (15°C, 20°C) and two light regimes (darkness, light) by simulating different wilting management practices. Correlation analysis with the whole dataset showed that soluble protein, glucose and starch contents declined in plant tissues concomitantly with water loss, while amino acid, sucrose and fructose contents increased. Transient increase in amino acid content suggests that the decrease in protein content was due to proteolysis during wilting. Sucrose and fructose contents generally increased in plant tissues harvested at anthesis and wilted in light whereas they were unaffected in plants wilted in darkness. Fructan content remained stable. Fructan exohydrolase (FEH) and soluble acid invertase (INV) activities were well preserved during the first 12 h of wilting and might facilitate the fermentation process at the beginning of ensiling by supplying fructose from fructans and hexoses from sucrose to the fermentive bacteria.  相似文献   
    107.
    The purpose of this study was to compare methods for handling censored days to calving records in beef cattle data, and verify results of an earlier simulation study. Data were records from natural service matings of 33,176 first-calf females in Australian Angus herds. Three methods for handling censored records were evaluated. Censored records (records on noncalving females) were assigned penalty values on a within-contemporary group basis under the first method (DCPEN). Under the second method (DCSIM), censored records were drawn from their respective predictive truncated normal distributions, whereas censored records were deleted under the third method (DCMISS). Data were analyzed using a mixed linear model that included the fixed effects of contemporary group and sex of calf, linear and quadratic covariates for age at mating, and random effects of animal and residual error. A Bayesian approach via Gibbs sampling was used to estimate variance components and predict breeding values. Posterior means (PM) (SD) of additive genetic variance for DCPEN, DCSIM, and DCMISS were 22.6d2 (4.2d2), 26.1d2 (3.6d2), and 13.5d2 (2.9d2), respectively. The PM (SD) of residual variance for DCPEN, DCSIM, and DCMISS were 431.4d2 (5.0d2), 371.4d2 (4.5d2), and 262.2d2 (3.4d2), respectively. The PM (SD) of heritability for DCPEN, DCSIM, and DCMISS were 0.05 (0.01), 0.07 (0.01), and 0.05 (0.01), respectively. Simulating trait records for noncalving females resulted in similar heritability to the penalty method but lower residual variance. Pearson correlations between posterior means of animal effects for sires with more than 20 daughters with records were 0.99 between DCPEN and DCSIM, 0.77 between DCPEN and DCMISS, and 0.81 between DCSIM and DCMISS. Of the 424 sires ranked in the top 10% and bottom 10% of sires in DCPEN, 91% and 89%, respectively, were also ranked in the top 10% and bottom 10% in DCSIM. Little difference was observed between DCPEN and DCSIM for correlations between posterior means of animal effects for sires, indicating that no major reranking of sires would be expected. This finding suggests little difference between these two censored data handling techniques for use in genetic evaluation of days to calving.  相似文献   
    108.
    Mating and calving records for 47,533 first-calf heifers in Australian Angus herds were used to examine the relationship between days to calving (DC) and two measures of fertility in AI data: 1) calving to first insemination (CFI) and 2) calving success (CS). Calving to first insemination and calving success were defined as binary traits. A threshold-linear Bayesian model was employed for both analyses: 1) DC and CFI and 2) DC and CS. Posterior means (SD) of additive covariance and corresponding genetic correlation between the DC and CFI were -0.62 d (0.19 d) and -0.66 (0.12), respectively. The corresponding point estimates between the DC and CS were -0.70 d (0.14 d) and -0.73 (0.06), respectively. These genetic correlations indicate a strong, negative relationship between DC and both measures of fertility in AI data. Selecting for animals with shorter DC intervals genetically will lead to correlated increases in both CS and CFI. Posterior means (SD) for additive and residual variance and heritability for DC for the DC-CFI analysis were 23.5 d2 (4.1 d2), 363.2 d2 (4.8 d2), and 0.06 (0.01), respectively. The corresponding parameter estimates for the DC-CS analysis were very similar. Posterior means (SD) for additive, herd-year and service sire variance and heritability for CFI were 0.04 (0.01), 0.06 (0.06), 0.14 (0.16), and 0.03 (0.01), respectively. Posterior means (SD) for additive, herd-year, and service sire variance and heritability for CS were 0.04 (0.01), 0.07 (0.07), 0.14 (0.16), and 0.03 (0.01), respectively. The similarity of the parameter estimates for CFI and CS suggest that either trait could be used as a measure of fertility in AI data. However, the definition of CFI allows the identification of animals that not only record a calving event, but calve to their first insemination, and the value of this trait would be even greater in a more complete dataset than that used in this study. The magnitude of the correlations between DC and CS-CFI suggest that it may be possible to use a multitrait approach in the evaluation of AI and natural service data, and to report one genetic value that could be used for selection purposes.  相似文献   
    109.
    Two methods to jointly model age of dam (AOD) and age of animal in random regression analyses of growth in Gelbvieh cattle were examined. The first method (M1) was analogous to the multiple-trait analysis and consisted of AOD as a nested class variable and a cubic polynomial regression on age nested within birth, weaning, and yearly weights. The second method (M2) used two-dimensional splines, with age knots at 150, 205, 270, 340, and 390 d. The AOD knots were placed at 725, 1,464, and 2,189 d. These selected knots were used to form a two-dimensional grid containing 15 knots, each representing a specific age and AOD combination. A data set containing Gelbvieh growth records was split along contemporary groups into two data sets. Data set 1 contained 316,078 records and was used for prediction by mixed-model equations. Data set 2 contained 164,167 records and was used for cross validation. In the complete data set, only 90 and 30% of animals with birth weight had records on weaning and yearling weights, respectively. Models were evaluated based on R2, average squared error (ASE), percent bias, and plots of solutions. The ASE for weights associated with birth weight, weaning weight, and yearling weight for M1 were 15, 505, and 703 kg2. With M2, large jumps in fixed-effect estimates were observed outside the two-dimensional grid. To eliminate this problem, weighted one-dimensional splines were used for extrapolation beyond the two-dimensional grid. For M2 with weighted spline extrapolation, the ASE were 15, 542, and 777 kg2 for birth weight, weaning weight, and yearling weight, respectively. Creation of optimal two-dimensional splines is difficult when data are clustered. Despite such difficulties, the two-dimensional spline was capable of jointly and continuously modeling AOD and age of animal.  相似文献   
    110.
    The objective of this study was to examine the feasibility of using random regression-spline (RR-spline) models for fitting growth traits in a multibreed beef cattle population. To meet the objective, the results from the RR-spline model were compared with the widely used multitrait (MT) model when both were fit to a data set (1.8 million records and 1.1 million animals) provided by the American Gelbvieh Association. The effect of prior information on the EBV of sires was also investigated. In both RR-spline and MT models, the following effects were considered: individual direct and maternal additive genetic effects, contemporary group, age of the animal at measurement, direct and maternal heterosis, and direct and maternal additive genetic mean effect of the breed. Additionally, the RR-spline model included an individual direct permanent environmental effect. When both MT and RR-spline models were applied to a data set containing records for weaning weight (WWT) and yearling weight (YWT) within specified age ranges, the rankings of bulls' direct EBV (as measured via Pearson correlations) provided by both models were comparable, with slightly greater differences in the reranking of bulls observed for YWT evaluations (>or=0.99 for BWT and WWT and >or=0.98 for YWT); also, some bulls dropped from the top 100 list when these lists were compared across methods. For maternal effects, the estimated correlations were slightly smaller, particularly for YWT; again, some drops from the top 100 animals were observed. As in regular MT multibreed genetic evaluations, the heterosis effects and the additive genetic effects of the breed could not be estimated from field data, because there were not enough contemporary groups with the proper composition of purebred and crossbred animals; thus, prior information based on literature values had to be included. The inclusion of prior information had a negligible effect in the overall ranking for bulls with greater than 20 birth weight progeny records; however, the effect of prior information for breeds or groups poorly represented in the data was important. The Pearson correlations for direct and maternal WWT and YWT ranged from 0.95 to 0.98 when comparing evaluations of data sets for which the out-of-range age records were removed or retained. Random regression allows for avoiding the discarding of records that are outside the usual age ranges of measurement; thus, greater accuracies are achieved, and greater genetic progress could be expected.  相似文献   
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号