首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66231篇
  免费   2827篇
  国内免费   35篇
林业   5338篇
农学   2948篇
基础科学   399篇
  8708篇
综合类   9121篇
农作物   3633篇
水产渔业   4543篇
畜牧兽医   27943篇
园艺   1646篇
植物保护   4814篇
  2019年   440篇
  2018年   3458篇
  2017年   3474篇
  2016年   1920篇
  2015年   697篇
  2014年   790篇
  2013年   1804篇
  2012年   2186篇
  2011年   3866篇
  2010年   3269篇
  2009年   2351篇
  2008年   3058篇
  2007年   3237篇
  2006年   1618篇
  2005年   1555篇
  2004年   1572篇
  2003年   1600篇
  2002年   1340篇
  2001年   1935篇
  2000年   2041篇
  1999年   1512篇
  1998年   589篇
  1997年   514篇
  1996年   466篇
  1995年   617篇
  1994年   534篇
  1993年   483篇
  1992年   1167篇
  1991年   1216篇
  1990年   1186篇
  1989年   1113篇
  1988年   1070篇
  1987年   1093篇
  1986年   1041篇
  1985年   970篇
  1984年   811篇
  1983年   694篇
  1982年   424篇
  1981年   385篇
  1979年   638篇
  1978年   507篇
  1977年   453篇
  1976年   411篇
  1975年   453篇
  1974年   528篇
  1973年   509篇
  1972年   534篇
  1971年   451篇
  1970年   424篇
  1969年   467篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
In this work, dopamine hydrochloride, an environmental friendly compound, was applied on polyester fabric through conventional simple impregnation method in alkaline solution (pH=8.5) at room temperature. In situ spontaneous oxidative polymerization of dopamine form polydopamine (PDA) along with aminolysis of polyester fabric surface. Also, a range of colored polyester fabric were successfully achieved by formation of polydopamine adhesive coating layer at different concentration of dopamine hydrochloride (0.001-4 g/l). Fourier transform infrared spectroscopy and field emission scanning electron microscopy showed deposition of polydopmaine on the polyester fabric surface. The modified colored polyester fabric showed reasonable durability against washing, rubbing and light. The treated polyester fabric with 2 g/l dopamine hydrochloride as optimum concentration indicated not only lower spreading time for water droplet and electrical resistance with higher tensile strength but also very good bactericidal activity against Staphylococcus aureus and Escherichia coli.  相似文献   
992.
Alkaline pectinase was one of the most effective enzymes to treat cotton as alternative agent to replace the conventional alkaline method. Removal of pectin and cutin was considered the explanation for improvement of wettability as well as water adsorption on cotton fiber. However, degradation kinetics of pectin is unclear, and the influence of fiber shape on property changes after enzymatic treatment was ignored. The main objective of this work was to reveal interactions between pectinase and cotton fiber for mechanism study. A heterogeneous catalysis kinetic equation, which is associated with Langmuir adsorption model and enzyme deactivation, was used to describe the heterogeneous catalysis. The enzymatic process conditions were optimized. Raw cotton fibers, pectinase-treated and alkali-treated fibers were characterized by impurities content determination, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). Mechanism of water adsorption enhancement on treated fibers was discussed. In addition to elimination of the outer impurities, flat fibers with less twist and shape changes of lumen were also obtained to ensure better accessibility and water adsorption after enzymatic treatment.  相似文献   
993.
The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.  相似文献   
994.
Silk is very promising in the field of biomaterials as a natural biomacromolecule. Silk protein can be made into various forms of materials, including hydrogels. However, silk protein-based hydrogels have not attracted much attention due to its weak mechanical properties. Here, we report high water content silk protein-based hydrogels with tunable elasticity which were fabricated through Ru(II) mediated photochemically cross-linking tyrosine residues in regenerated silk protein. The regenerated silk protein was characterized by Fourier transform infrared spectroscopy (FTIR). The gelation kinetics of the silk protein was studied by rheology measurements. The compressive mechanical properties of the silk protein-based hydrogels was investigated using compressive tests and dynamic mechanical analysis (DMA). Compressive modulus of the hydrogels reached 349±64 MPa at 15 % strain. The fabricated silk protein-based hydrogels were also characterized by Scanning electron microscopy (SEM), revealing an interconnected porous network structure, typical of hydrogels, with an average pore size of approximately 130 μm. Finally, biocompatibility of the silk protein-based hydrogels was demonstrated through cell culture studies using a human fibroblast cell line, HFL1. The reported silk protein-based hydrogels represent a promising candidate for biomaterial applications.  相似文献   
995.
The pathogenicity of 10 bacterial isolates was investigated on potato, radish, carrot and beet, including sensitivity and pathogen control efficacy. The isolates were identified by morphological, biochemical and molecular methods. All isolates were pathogenic on radish, carrot, and beet, and were highly virulent on potato. Although the isolates were obtained from different locations in the El Fuerte Valley (Sinaloa, Mexico), they were similar in their morphological, physiological and biochemical characteristics. Sequences of the 16S rRNA gene obtained by PCR were identical for all isolates. These results indicate that the bacterial isolates from potato scabby tissue belong to S. acidiscabies. Furthermore, the effectiveness of fluazinam, both in vitro and under greenhouse and field conditions, represents a possibleoption for chemical control of potato common scab disease. While our results suggest that spraying at seeding is effective in controlling common scab, future studies to combine this treatment with seed dressing before planting will be conducted to determine if there is an increase in disease control.  相似文献   
996.
Removal of diseased plants (roguing) is commonly practiced in seed potato production. Diseased plants left to desiccate in fields could possibly serve as sources of Potato virus Y (PVY). PVY acquisition by three aphid species (Myzus persicae, Rhopalosiphum padi, Aphis fabae) was evaluated with leaflets from rogued plants for seven days. Results showed greater PVY acquisition rates in non-colonizing aphids species compared to colonizing ones. The proportion of aphids leaving leaflets increased with time (i.e. days after plants were uprooted) and some aphids were carrying PVY in their stylets on each of the seven days of the experiment, suggesting that aphids were able to probe and acquire PVY even when plants wilted. These results confirmed that diseased plants left in fields can serve as a source of PVY for aphids even after they wilted and emphasises that proper actions must be taken to efficiently remove diseased plants from fields.  相似文献   
997.
In the 2014 and 2015 crop seasons, the efficacies of different types, rates and combinations of mineral oil and insecticide foliar sprays for reducing Potato virus Y (PVY) spread were tested in controlled field trials in New Brunswick (NB), Canada. Experimental plots were planted with certified PVY-free Goldrush, supplemented with known virus-infected seed to raise PVY inoculum to 2.3% and 3% at the beginning of the 2014 and 2015 seasons, respectively. Treatments consisted of mineral oil-only sprays at different application rates, insecticide-only sprays of differing numbers, and several combined mineral oil and insecticide spray regimes, all compared to a no-spray control treatment. PVY spread to 18% (2014) and 22% (2015) of initially virus-free plants in no-spray control plots, with significant reductions observed in PVY spread in several treatments. Greatest PVY reductions, as low as 4% (2014) and 12% (2015), were in combined mineral oil and insecticide spray treatments, followed by oil-only sprays; while insecticide-only sprays did not significantly reduce PVY spread. As well as measuring PVY spread to marked test plants and randomly collected post-harvest tuber sample from the plots, exhibited similar treatment pattern for PVY incidence. Multiple logistic regression modeling confirmed the relative efficacy of combined oil and insecticide sprays for reducing PVY spread, while accounting for variable inoculum and aphid factors. Modeling also highlighted the importance of planting low-PVY seed initially, and of early application of foliar sprays. Local best management practice recommendations for reduction of in-field PVY spread were discussed.  相似文献   
998.
Improvement of both the tensile and impact strength of the same polymeric material has always been a great challenge for the plastic industry. The study focuses on the effect of incorporation of calcium carbonate nanoparticles (0.3 wt% to 15 wt%) into three polypropylene (PP) based matrices viz. PP homopolymer, propylene-ethylene (PP-PE) copolymer and the blend of PP:PP-PE (30:70) to improve their impact behavior without hampering the tensile strength much. A loss in both the tensile and impact properties was observed in PP based nanocomposite. However, PP-PE based nanocomposites showed a significant improvement in impact strength (47 %) at 10 wt% loading with a loss of tensile strength by 22 %. To minimize this loss a blend of PP:PP-PE (30:70) was explored as a matrix. At 10 wt% loading, this matrix showed an improvement of 30 % in impact strength whereas the tensile loss was minimized to 10 %. Further, silane coupling agent which promoted good interfacial adhesion was used for best compositions. The variation of crystalline morphology of the nanocomposites with various formulations was analyzed using differential scanning calorimetry and X-ray diffraction.  相似文献   
999.
This paper is about the degradation of polyvinyl alcohol (PVA) in aqueous solutions using a H2O2/Mn(II) system. Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) were applied to analyze the degradation products of PVA, and the results revealed that the backbone chain of PVA could be effectively broken and oxidized. Several unsaturated degradation products, including carboxylic acids, ketones, aldehydes, olefins, and alkynes were also detected and identified by gas chromatography-mass spectrometry (GC-MS), which indicated that higher treatment temperatures would considerably promote the generation of lower molecular weight degradation products. According to the work presented in this paper, the degradation efficiency of PVA increased from 55 % at 60 oC to 99 % at 90 oC after treatment when the initial PVA concentration was 5 %, at pH=3 with a H2O2 and Mn(II) dose of 100 ml/l and 0.6 mol/l, respectively. In addition, kinetic modeling indicated that the experimental results were best fitted by the Page-modified model with an activation energy of 48.78 kJ/mol.  相似文献   
1000.
The structures of disperse dyes and their intermolecular interactions have important impacts on dyeing and printing performances for polyester fabrics. The fluorine dyes show some unique molecular stability and photochemical properties. The dyeing property of the azo dye containing trifluoromethyl group for polyester fabrics, 4'-(N-acetoxyethyl-Nethyl)- amino-2-bromine-4-nitro-6-trifluoromethylazo- benzene (D1), was investigated and compared with the similar structure disperse dye. The results show that the high color yield and good exhaustion of the dyed PET fabrics could be obtained. The polyester fabrics dyed with D1 had excellent light fastness. Its single crystal was prepared and the supramolecular interactions were solved by X-ray diffraction. Dye D1 formed triclinic crystals in a trimeric packing mode. The C-F bond distances of CF3 are 1.2730 Å, 1.2240 Å and 1.2900 Å, respectively. The two benzene rings linked azo unit (-N=N-) are obviously twist. The dihedral angle of the two benzene rings is 50.23 o. There are six weak hydrogen bonds around trifluoromethyl group in the intramolecule and intermolecule. The excellent light stability of the dye should be attributed to its unique supramolecular structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号