首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
林业   3篇
  3篇
综合类   1篇
农作物   1篇
畜牧兽医   23篇
园艺   1篇
植物保护   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1991年   1篇
排序方式: 共有33条查询结果,搜索用时 31 毫秒
21.
In order to better understand the structure and composition of forest plant communities, we aimed to predict the abundance of understory herbaceous species locally at the stand level and according to different environments. For this, we seeked to model species distributions of abundance at a regional scale in relationship with the local stand structure (canopy openness) and regional soil resources (soil pH).Floristic inventories, performed in different light and soil conditions located in 1202 records of north eastern France, were used to analyze the combined effect of canopy openness and soil pH on the abundance of 12 common western European forest species: Anemone nemorosa, Deschampsia flexuosa, Festuca altissima, Hedera helix, Lamium galeobdolon, Lonicera periclymenum, Molinia caerulea, Oxalis acetosella, Pteridium aquilinum, Rubus fruticosus, Rubus idaeus, and Vaccinium myrtillus. Ordinal regression models relating species abundance responses to their environment were developed.For most species (eight out of 12), distribution was significantly affected by canopy openness and soil pH. Differences among low-abundance (i.e. cover <25%) and high-abundance (i.e. cover >25%) responses were noted for 11 species along the canopy openness gradient and four species along the pH gradient. The present study quantifies optimal light and soil nutrient requirements for high-abundance responses and quantifies light and soil nutrients tolerance conditions for low-abundance responses. The combination of both factors highlights the pre-eminence of pH conditions occurrence and canopy openness for species abundance.The models developed by this study may be used to define canopy openness thresholds in function of soil characteristics to control the development of species during forest regeneration. The species-specific reactions on local canopy openness along a regional soil gradient illustrate the need for a species-specific management approach.  相似文献   
22.
Reasons for performing the study: In contrast with reports in man and small animals, a systematic classification of seizures in horses is lacking. Objectives: The purpose of this study was to classify seizures based on their aetiology and to characterise epilepsy in 104 horses presented for seizures at the Ohio State University Veterinary Medical Center between 1988 and 2009. Methods: In a retrospective observational study, seizures were classified by aetiology based on history, clinical observations, diagnostic investigations (e.g. electroencephalograms, cerebrospinal fluid and computed tomography imaging of the head) and post mortem examinations, when available. Univariate and multivariate logistic regression analyses were performed. Results: Epilepsy (i.e. 2 or more recurrent seizures) was identified in 70% of cases, and further classified as symptomatic (i.e. structural brain pathology, 35.6% of cases), cryptogenic (i.e. unknown, 54.8% of cases) and idiopathic (i.e. suspected genetic predisposition, 2.7% of cases). Normal neurological examination on admission, the presence of seizures unprovoked by any identified factors and paroxysmal epileptiform activity on electroencephalogram recordings were all strongly (P<0.05) correlated with epilepsy on univariate analysis. For a horse with generalised seizures, the odds of having epilepsy was 7 times lower compared with a similar horse with partial seizures (P<0.05) in multivariate modelling. Conclusions: Seizure aetiology was symptomatic or cryptogenic in most horses, whereas reactive seizures and idiopathic epilepsy were less common. Potential relevance: This study is the first attempt to classify seizures and to characterise epilepsy in a referral-based equine population. Predictive factors of epilepsy in horses were similar to those reported in other species and may assist the clinician with the early diagnosis of epilepsy.  相似文献   
23.
24.
Tree-based intercropping (TBI) systems, combining agricultural alley crops with rows of hardwood trees, are largely absent in Canada. We tested the hypothesis that the roots of 5–8 years old hybrid poplars, growing in two TBI systems in southern Québec, would play a “safety-net” role of capturing nutrients leaching below the rooting zone of alley crops. TBI research plots at each site were trenched to a depth of 1 m on each side of an alley. Control plots were left with tree roots intact. In each treatment at each site, leachate at 70 cm soil depth was repeatedly sampled over two growing seasons using porous cup tension lysimeters, and analyzed for nutrient concentrations. Daily water percolation rates were estimated with the forest hydrology model ForHyM. Average nutrient concentrations for all days between consecutive sampling dates were multiplied by water percolation rates, yielding daily nutrient leaching loss estimates for each sampling step. We estimated that tree roots in the TBI system established on clay loam soil decreased subsoil NO3 leaching by 227 kg N ha−1 and 30 kg N ha−1 over two consecutive years, and decreased dissolved organic N (DON) leaching by 156 kg N ha−1 year−1 in the second year of the study. NH4 + leaching losses at the same site were higher when roots were present, but were 1–2 orders of magnitude lower than NO3 or DON leaching. At the sandy textured site, the safety net role of poplar roots with respect to N leaching was not as effective, perhaps because N leaching rates exceeded root N uptake by a wider margin than at the clay loam site. At the sandy textured site, significant and substantial reductions of sodium leaching were observed where tree roots were present. At both sites, tree roots reduced DON concentrations and the ratio of DON to inorganic N, perhaps by promoting microbial acquisition of DON through rhizodeposition. This study demonstrated a potential safety-net role by poplar roots in 5–8 year-old TBI systems in cold temperate regions.  相似文献   
25.
Although insulin resistance (IR) has been increasingly recognized in horses, a clear understanding of its pathophysiology is lacking. The purpose of the present study was to determine the early pathologic changes in IR horses by characterizing alterations in proteins that play key roles in innate immunological responses and inflammatory pathways, and by identifying potential links with glucose transport and insulin signaling. Visceral (VIS) and subcutaneous (SC) adipose tissue and skeletal muscle (SM) biopsies were collected from horses, which were classified as insulin-sensitive (IS) or IR based on the results of an insulin-modified frequently sampled intravenous glucose tolerance test. Protein expression of Toll-like receptor 4 (TLR-4), suppressor of cytokine signaling 3 (SOCS-3) and tumor necrosis factor alpha (TNF-α) were quantified by Western blotting in VIS and SC adipose depots and SM, as well as insulin receptor substrate 1 (IRS-1). To better characterize the potential relationship between inflammation, IR and impaired glucose transport, we correlated active cell surface glucose transporter 4 (GLUT-4) content (measured by a cell surface biotinylated assay) with individual- and tissue-specific data related to inflammation. IR was associated with a significantly increased expression of TLR-4 and SOCS-3 in SM and VIS tissue, without a significant change in SC site. We also observed a significant increase in TNF-α in VIS, but not in SC, tissue of IR vs. IS horses. There was no difference in total content or serine phosphorylation of IRS-1 for any sampling site in IR compared to IS horses. We further observed a significant positive correlation between TLR-4 content and SOCS-3, as well as a significant negative correlation between SOCS-3 content and GLUT-4 trafficking. Taken together, the data suggested a pro-inflammatory state in SM and VIS, but not SC, adipose depot during compensated IR. In addition, SOCS-3 appears to be a novel link between inflammation and dysregulated glucose metabolism and insulin sensitivity during the early pathogenesis of insulin resistance.  相似文献   
26.
27.
Background: Insulin resistance (IR) has been widely recognized in humans, and more recently in horses, but its underlying mechanisms are still not well understood. The translocation of glucose transporter 4 (GLUT4) to the cell surface is the limiting step for glucose uptake in insulin‐sensitive tissues. Although the downstream signaling pathways regulating GLUT translocation are not well defined, AS160 recently has emerged as a potential key component. In addition, the role of GLUT12, one of the most recently identified insulin‐sensitive GLUTs, during IR is unknown. Hypothesis/Objectives: We hypothesized that cell‐surface GLUT will be decreased in muscle by an AS160‐dependent pathway in horses with IR. Animals: Insulin‐sensitive (IS) or IR mares (n = 5/group). Methods: Muscle biopsies were performed in mares classified as IS or IR based on results of an insulin‐modified frequently sampled IV glucose tolerance test. By an exofacial bis‐mannose photolabeled method, we specifically quantified active cell‐surface GLUT4 and GLUT12 transporters. Total GLUT4 and GLUT12 and AS160 protein expression were measured by Western blots. Results: IR decreased basal cell‐surface GLUT4 expression (P= .027), but not GLUT12, by an AS160‐independent pathway, without affecting total GLUT4 and GLUT12 content. Cell‐surface GLUT4 was not further enhanced by insulin stimulation in either group. Conclusions and Clinical Importance: IR induced defects in the skeletal muscle glucose transport pathway by decreasing active cell‐surface GLUT4.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号