首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   59篇
  国内免费   1篇
林业   48篇
农学   34篇
基础科学   4篇
  214篇
综合类   83篇
农作物   51篇
水产渔业   80篇
畜牧兽医   606篇
园艺   17篇
植物保护   90篇
  2024年   3篇
  2023年   12篇
  2022年   9篇
  2021年   27篇
  2020年   26篇
  2019年   31篇
  2018年   23篇
  2017年   17篇
  2016年   25篇
  2015年   21篇
  2014年   47篇
  2013年   44篇
  2012年   93篇
  2011年   107篇
  2010年   55篇
  2009年   57篇
  2008年   79篇
  2007年   88篇
  2006年   76篇
  2005年   68篇
  2004年   51篇
  2003年   45篇
  2002年   51篇
  2001年   15篇
  2000年   15篇
  1999年   6篇
  1998年   7篇
  1997年   10篇
  1996年   15篇
  1995年   11篇
  1994年   9篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1980年   3篇
  1978年   3篇
  1977年   4篇
  1975年   4篇
  1970年   2篇
  1969年   4篇
  1966年   2篇
排序方式: 共有1227条查询结果,搜索用时 17 毫秒
81.
The relationship between chemical structure and gut microbial degradation rates of 14 flavonoids, flavone, apigenin, chrysin, naringenin, kaempferol, genistein, daidzein, daidzin, puerarin, 7,4'-dihydroxyflavone, 6,4'-dihydroxyflavone, 5,4'-dihydroxyflavone, 5,3'-dihydroxyflavone, and 4'-hydroxyflavone, was investigated by anaerobically fermenting the flavonoids with human gut microflora (n = 11 subjects). Degradation rates for the 5,7,4'-trihydroxyl flavonoids, apigenin, genistein, naringenin, and kaempferol, were significantly faster than the other structural motifs. Puerarin was resistant to degradation by the gut microflora. Extensive degradation of flavonoids by gut microflora may result in lower overall bioavailability than those flavonoids that are slowly degraded because rapidly degrading flavonoids are less likely to be absorbed intact.  相似文献   
82.
The ethylene-vinyl alcohol copolymers (EVOHs) are well-known high oxygen barrier materials that are being used successfully in the design of packaging structures for oxygen-sensitive food or pharmaceutical products. Recently, there has been increasing interest in using EVOH materials to provide a high barrier to organic compounds as a means to reduce food aroma scalping. However, the barrier function of this family of materials diminishes significantly in humid environments, and it is supposed that so does the organic vapor barrier. In this work, a new sorption-based method to characterize the interaction between food aroma and polymer films for packaging as a function of relative humidity is presented and is used to determine the barrier to ethyl butyrate and alpha-pinene of EVOH at 23 degrees C. The results show that although EVOH is an excellent barrier to food aroma when dry, a property that even improves at low relative humidity (RH), the solubility and diffusivity of the compounds tested increase dramatically with humidity at medium to high water activities. However, even in the worst case (100% RH), EVOH outperforms low-density polyethylene (LDPE) as a barrier to organic vapors at least 500,000-fold.  相似文献   
83.
The metabolism of soyasaponin I (3-O-[alpha-L-rhamnopyranosyl-beta-D-galactopyranosyl-beta-D-glucuronopyranosyl]olean-12-ene-3beta,22beta,24-triol) by human fecal microorganisms was investigated. Fresh feces were collected from 15 healthy women and incubated anaerobically with 10 mmol soyasaponin I/g feces at 37 degrees C for 48 h. The disappearance of soyasaponin I in this in vitro fermentation system displayed apparent first-order rate loss kinetics. Two distinct soyasaponin I degradation phenotypes were observed among the subjects: rapid soyasaponin degraders with a rate constant k = 0.24 +/- 0.04 h(-)(1) and slow degraders with a k = 0.07 +/- 0.02 h(-)(1). There were no significant differences in the body mass index, fecal moisture, gut transit time, and soy consumption frequency between the two soyasaponin degradation phenotypes. Two primary gut microbial metabolites of soyasaponin I were identified as soyasaponin III (3-O-[beta-D-galactopyranosyl-beta-D-glucuronopyranosyl]olean-12-ene-3beta,22beta,24-triol) and soyasapogenol B (olean-12-ene-3beta,22beta,24-triol) by NMR and electrospray ionized mass spectroscopy. Soyasaponin III appeared within the first 24 h and disappeared by 48 h. Soyasapogenol B seemed to be the final metabolic product during the 48 h anaerobic incubation. These results indicate that dietary soyasaponins can be metabolized by human gut microorganisms. The sugar moieties of soyasaponins seem to be hydrolyzed sequentially to yield smaller and more hydrophobic metabolites.  相似文献   
84.
High concentrations of heavy metals are known to be toxic to many soil organisms. The effects of long-term exposure to lower levels of metals on the soil microbial community are, however, less well understood. The southern Pennines of the U.K. are characterised by expanses of ombrotrophic peat soils that have experienced deposition of high levels of heavy metals since the mid to late 1800s. Concentrations of metals in the peat remain high but the effect of the contamination on the in-situ microbial communities is unknown. Geochemical and molecular polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and sequencing techniques were used to derive new information on the metal chemistry and microbial populations in peat soils from six locations in the southern Pennines. All sites were highly acidic (pH 3.00–3.14) with high concentrations of potentially toxic heavy metals, particularly porewater Zn and particulate-associated Pb. The results also reveal a split in site characteristics between the most polluted sites with the highest levels of bioavailable metals (Bleaklow, FeatherBed Moss and White Hill) and those with much lower bioavailable metals (Cowms Moor, Holme Moss and Round Hill). There was no difference in the number of dominant bacterial species between the sites but there were significant differences in the species composition. At the three sites with the highest levels of bioavailable metals, bacterial species with a high similarity to acidophilic sulphur- and iron-oxidizing bacteria and those from high metal environments were detected. The transformations carried out by these metal mobilising and acid producing bacteria may make heavy metals more bioavailable and therefore more toxic to higher organisms. Bacteria with similarity to those typically found in forest and grassland soils were documented at the three sites with the lowest levels of bioavailable metals. The data highlight the need for further studies to elucidate the species diversity and functionality of bacteria in heavy metal contaminated peats in order to assess implications for moorland restoration.  相似文献   
85.
From the global change perspective, increase of atmospheric CO2 and land cover transformation are among the major impacts caused by human activities. In this study, we are addressing the combined issues of the effect of CO2 concentration increase and plant type on soil microbial activities by asking how annual and perennial plant groups affect soil microbial processes under elevated CO2. The experimental design used a mix of species of different growth forms for both annuals and perennials. Our objective was: (1) to determine how two years of annual or perennial plant cover and CO2 enrichment could affect Mediterranean soil microbial processes; (2) to test the resistance and the resilience of these soil functional processes after a natural perturbation. We determined the effects of 2 years atmospheric CO2 enrichment on soil potential respiration (SIR), denitrification (DEA) and nitrification (NEA) activities. We could not find any significant effect of CO2 increase on SIR, DEA and NEA. However, we found a strong effect of the plant cover type, i.e. annuals versus perennials, on the potential microbial activity related to N cycling. DEA and NEA were significantly higher in soil under annual plants while SIR was not significantly different. To determine whether these changes would survive a natural perturbation, we carried out a rain event experiment once the experimental treatments (i.e. different plant cover and atmospheric CO2 concentration) were stopped. The soil potential respiration, as expressed by the SIR, was not affected and remained stable. DEA rates converged rapidly under annuals and perennials after the rain event. Under both annuals and perennials NEA increased significantly after the rain event but remained significantly higher in the soil with annual plants. The relative change of the soil microbial processes induced by annual and perennial plants was inversely related to the density and the diversity of the corresponding microbial functional groups.  相似文献   
86.
The acquisitions of mitochondria and plastids were important events in the evolution of the eukaryotic cell, supplying it with compartmentalized bioenergetic and biosynthetic factories. Ancient invasions by eubacteria through symbiosis more than a billion years ago initiated these processes. Advances in geochemistry, molecular phylogeny, and cell biology have offered insight into complex molecular events that drove the evolution of endosymbionts into contemporary organelles. In losing their autonomy, endosymbionts lost the bulk of their genomes, necessitating the evolution of elaborate mechanisms for organelle biogenesis and metabolite exchange. In the process, symbionts acquired many host-derived properties, lost much of their eubacterial identity, and were transformed into extraordinarily diverse organelles that reveal complex histories that we are only beginning to decipher.  相似文献   
87.
Members of the DExH/D superfamily of nucleic acid-activated nucleotide triphosphatases are essential for virtually all aspects of RNA metabolism, including pre-messenger RNA splicing, RNA interference, translation, and nucleocytoplasmic trafficking. Physiological substrates for these enzymes are thought to be regions of double-stranded RNA, because several DExH/D proteins catalyze strand separation in vitro. These "RNA helicases" can also disrupt RNA-protein interactions, but it is unclear whether this activity is coupled to duplex unwinding. Here we demonstrate that two unrelated DExH/D proteins catalyze protein displacement independently of duplex unwinding. Therefore, the essential functions of DExH/D proteins are not confined to RNA duplexes but can be exerted on a wide range of ribonucleoprotein substrates.  相似文献   
88.
Nanominerals, mineral nanoparticles, and Earth systems   总被引:4,自引:0,他引:4  
Minerals are more complex than previously thought because of the discovery that their chemical properties vary as a function of particle size when smaller, in at least one dimension, than a few nanometers, to perhaps as much as several tens of nanometers. These variations are most likely due, at least in part, to differences in surface and near-surface atomic structure, as well as crystal shape and surface topography as a function of size in this smallest of size regimes. It has now been established that these variations may make a difference in important geochemical and biogeochemical reactions and kinetics. This recognition is broadening and enriching our view of how minerals influence the hydrosphere, pedosphere, biosphere, and atmosphere.  相似文献   
89.
The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome receptor also recognized the complex between hemoglobin and haptoglobin-related protein, which explains its ability to capture trypanolytic HDLs. Thus, in humans the presence of haptoglobin-related protein has diverted the function of the trypanosome haptoglobin-hemoglobin receptor to elicit innate host immunity against the parasite.  相似文献   
90.
Despite concerns of consumer protection andenvironmental groups that the use of geneticallyproduced growth hormone in milk-producing cows mayadversely impact the safety of the milk supply,scientific evidence and governmental findings from theUSA appear to indicate that milk fromtreated cows is identical in quality, taste, andnutritional value to milk from untreated cows. Limitedexperience to date in the USA demonstrateslittle consumer resistance to milk from cows that havereceived the growth hormone, which can lead to a 15%increase in milk production. In fact, if there is noperceived differentiation between the two forms ofmilk, the issue offers little choice to consumers atlarge, and may result in economic benefit only toselected dairy farmers, as well as the producers ofthe genetically produced growth hormone. Thissituation in the USA may be an example ofdysfunctional technology transfer, with desirablebenefits to a few, and as yet unknown benefits to thesociety. The USA has taken a bold move inapproving the use of bovine growth hormone in milk-producing cows, while the European Union has takena divergent approach by enacting lengthy moratoriumsagainst its use. The basic lesson to be learned fromthe bST case is that lack of awareness amonggovernment officials and the public at large serves asa significant impediment to the adoption of newtechnologies. Accordingly, delays may occur indelivery of significant social benefits to thepopulation as a whole. Obviously, the issue extendsbeyond bST.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号