首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   722篇
  免费   66篇
林业   56篇
农学   14篇
基础科学   7篇
  139篇
综合类   32篇
农作物   28篇
水产渔业   68篇
畜牧兽医   383篇
园艺   14篇
植物保护   47篇
  2024年   3篇
  2023年   23篇
  2022年   18篇
  2021年   28篇
  2020年   21篇
  2019年   32篇
  2018年   32篇
  2017年   41篇
  2016年   40篇
  2015年   26篇
  2014年   43篇
  2013年   30篇
  2012年   55篇
  2011年   52篇
  2010年   32篇
  2009年   31篇
  2008年   35篇
  2007年   25篇
  2006年   27篇
  2005年   39篇
  2004年   36篇
  2003年   36篇
  2002年   41篇
  2001年   6篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
  1996年   8篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1991年   1篇
  1988年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1943年   1篇
  1888年   1篇
排序方式: 共有788条查询结果,搜索用时 31 毫秒
51.
In mineral soil, organic matter (OM) accumulates mainly on and around surfaces of silt- and clay-size particles. When fractionated according to particle density, C and N concentration (per g fraction) and C/N of these soil organo-mineral particles decrease with increasing particle density across soils of widely divergent texture, mineralogy, location, and management. The variation in particle density is explained potentially by two factors: (1) a decrease in the mass ratio of organic to mineral phase of these particles, and (2) variations in density of the mineral phase. The first explanation implies that the thickness of the organic accumulations decreases with increasing particle density. The decrease in C/N can be explained at least partially by especially stable sorption of nitrogenous N-containing compounds (amine, amide, and pyrrole) directly to mineral surfaces, a phenomenon well documented both empirically and theoretically. These peptidic compounds, along with ligand-exchanged carboxylic compounds, could then form a stable inner organic layer onto which other organics could sorb more readily than onto the unconditioned mineral surfaces (“onion” layering model).To explore mechanisms underlying this trend in C concentration and C/N with particle density, we sequentially density fractionated an Oregon andic soil at 1.65, 1.85, 2.00, 2.28, and 2.55 g cm−3 and analyzed the six fractions for measures of organic matter and mineral phase properties.All measures of OM composition showed either: (1) a monotonic change with density, or (2) a monotonic change across the lightest fractions, then little change over the heaviest fractions. Total C, N, and lignin phenol concentration all decreased monotonically with increasing density, and 14C mean residence time (MRT) increased with particle density from ca. 150 years to >980 years in the four organo-mineral fractions. In contrast, C/N, 13C and 15N concentration all showed the second pattern. All these data are consistent with a general pattern of an increase in extent of microbial processing with increasing organo-mineral particle density, and also with an “onion” layering model.X-ray diffraction before and after separation of magnetic materials showed that the sequential density fractionation (SDF) isolated pools of differing mineralogy, with layer-silicate clays dominating in two of the intermediate fractions and primary minerals in the heaviest two fractions. There was no indication that these differences in mineralogy controlled the differences in density of the organo-mineral particles in this soil. Thus, our data are consistent with the hypothesis that variation in particle density reflects variation in thickness of the organic accumulations and with an “onion” layering model for organic matter accumulation on mineral surfaces. However, the mineralogy differences among fractions made it difficult to test either the layer-thickness or “onion” layering models with this soil. Although SDF isolated pools of distinct mineralogy and organic-matter composition, more work will be needed to understand mechanisms relating the two factors.  相似文献   
52.
The asymmetric alpha-addition of relatively nonpolar hydrocarbon substrates, such as allyl and aryl groups, to aldehydes and ketones remains a largely unsolved problem in organic synthesis, despite the wide potential utility of direct routes to such products. We reasoned that well-established chiral amine catalysis, which activates aldehydes toward electrophile addition by enamine formation, could be expanded to this important reaction class by applying a single-electron oxidant to create a transient radical species from the enamine. We demonstrated the concept of singly occupied molecular orbital (SOMO) activation with a highly selective alpha-allylation of aldehydes, and we here present preliminary results for enantioselective heteroarylations and cyclization/halogenation cascades.  相似文献   
53.
54.
This study coupled stable isotope probing with phospholipid fatty acid analysis (13C-PLFA) to describe the role of microbial community composition in the short-term processing (i.e., C incorporation into microbial biomass and/or deposition or respiration of C) of root- versus residue-C and, ultimately, in long-term C sequestration in conventional (annual synthetic fertilizer applications), low-input (synthetic fertilizer and cover crop applied in alternating years), and organic (annual composted manure and cover crop additions) maize-tomato (Zea mays - Lycopersicum esculentum) cropping systems. During the maize growing season, we traced 13C-labeled hairy vetch (Vicia dasycarpa) roots and residues into PLFAs extracted from soil microaggregates (53-250 μm) and silt-and-clay (<53 μm) particles. Total PLFA biomass was greatest in the organic (41.4 nmol g−1 soil) and similar between the conventional and low-input systems (31.0 and 30.1 nmol g−1 soil, respectively), with Gram-positive bacterial PLFA dominating the microbial communities in all systems. Although total PLFA-C derived from roots was over four times greater than from residues, relative distributions (mol%) of root- and residue-derived C into the microbial communities were not different among the three cropping systems. Additionally, neither the PLFA profiles nor the amount of root- and residue-C incorporation into the PLFAs of the microaggregates were consistently different when compared with the silt-and-clay particles. More fungal PLFA-C was measured, however, in microaggregates compared with silt-and-clay. The lack of differences between the mol% within the microbial communities of the cropping systems and between the PLFA-C in the microaggregates and the silt-and-clay may have been due to (i) insufficient differences in quality between roots and residues and/or (ii) the high N availability in these N-fertilized cropping systems that augmented the abilities of the microbial communities to process a wide range of substrate qualities. The main implications of this study are that (i) the greater short-term microbial processing of root- than residue-C can be a mechanistic explanation for the higher relative retention of root- over residue-C, but microbial community composition did not influence long-term C sequestration trends in the three cropping systems and (ii) in spite of the similarity between the microbial community profiles of the microaggregates and the silt-and-clay, more C was processed in the microaggregates by fungi, suggesting that the microaggregate is a relatively unique microenvironment for fungal activity.  相似文献   
55.
Root growth conditions in the topsoil as affected by tillage intensity   总被引:1,自引:0,他引:1  
Many studies have reported impeded root growth in topsoil under reduced tillage or direct drilling, but few have quantified the effects on the least limiting water range for root growth. This study explored the effects of tillage intensity on critical soil physical conditions for root growth in the topsoil. Samples were taken from a 7-year tillage experiment on a Danish sandy loam at Foulum, Denmark (56°30′ N, 9°35′ E) in 2008. The main crop was spring barley followed by either dyer's woad (Isatis tinctoria L.) or fodder radish (Raphanus sativus L.) cover crops as subtreatment. The tillage treatments were direct drilling (D), harrowing 8-10 cm (H), and ploughing (P) to 20 cm depth. A chisel coulter drill was used in the H and D treatments and a traditional seed drill in the P treatment. Undisturbed soil cores were collected in November 2008 at soil field moisture capacity from the 4-8 and 12-16 cm depths.We estimated the critical aeration limit from either 10% air-filled porosity (εa) or relative gas diffusivity (D/D0) of 0.005 or 0.02 and found a difference between the two methods. The critical limit of soil aeration was best assessed by measuring gas diffusivity directly. Root growth was limited by a high penetration resistance in the D and H soils (below tillage depth). Poor soil aeration did not appear to be a significant limiting factor for root growth for this sandy loam soil, irrespective of tillage treatment. The soil had a high macroporosity and D/D0 exceeded 0.02 at field capacity. Fodder radish resulted in more macropores, higher gas diffusivity and lower pore tortuosity compared to dyer's woad. This was especially important for the H treatment where compaction was a significant problem at the lower depths of the arable layer (10-20 cm depth). Our results suggest that fodder radish could be a promising tool in the amelioration of soil compaction.  相似文献   
56.
57.
Two complementary studies were performed to examine (1) the effect of 18 years of nitrogen (N) fertilization, and (2) the effects of N fertilization during one growing season on soil microbial community composition and soil resource availability in a grassland ecosystem. N was added at three different rates: 0, 5.44, and 27.2 g N m−2 y−1. In both studies, Schizachyrium scoparium was the dominant plant species before N treatments were applied. Soil microbial communities from each experiment were characterized using fatty acid methyl ester (FAME) analysis. Discriminant analysis of the FAMEs separated the three N fertilizer treatments in both experiments, indicating shifts in the composition of the microbial communities. In general, plots that received N fertilizer at low or high application rates for 18 years showed increased proportions of bacterial FAMEs and decreased fungal FAMEs. In particular, control plots contained a significantly higher proportion of fungal FAMEs C18:1(cis9) and C18:2(cis9,12) and of the arbuscular mycorrhizal fungal (AMF) FAME, C16:1(cis11), than both of the N addition treatment plots. A significant negative effect of N fertilization on the AMF FAME, C16:1(cis11), was measured in the short-term experiment. Our results indicate that high rates of anthropogenic N deposition can lead to significant changes in the composition of soil microbial communities over short periods and can even disrupt the relationship between AMF and plants.  相似文献   
58.
Microbial activity is known to continue during the winter months in cold alpine and Arctic soils often resulting in high microbial biomass. Complex soil nutrient dynamics characterize the transition when soil temperatures approach and exceed 0 °C in spring. At the time of this transition in alphine soils microbial biomass declines dramatically together with soil pools of available nutrients. This pattern of change characterizes alpine soils at the winter-spring transition but whether a similar pattern occurs in Arctic soils, which are colder, is unclear. In this study amounts of microbial biomass and the availability of carbon (C), nitrogen (N) and phosphorus (P) for microbial and plant growth in wet peaty soils of an Arctic sedge meadow have been determined across the winter-spring boundary. The objective was to determine the likely causes of the decline in microbial biomass in relation to temperature change and nutrient availability. The pattern of soil temperature at depths of 5-15 cm can be divided into three phases: below −10 °C in late winter, from −7 to 0 °C for 7 weeks during a period of freeze-thaw cycles and above 0 °C in early spring. Peak microbial biomass and nutrient availability occurred early in the freeze-thaw phase. Subsequently, a steady decrease in inorganic N occurred, so that when soil temperatures rose above 0 °C, pools of inorganic nutrients in soils were very low. In contrast, amounts of microbial C and soluble organic C and N remained high until the end of the period of freeze-thaw cycles, when a sudden collapse occurred in soluble organic C and N and in phosphatase activity, followed by a crash in microbial biomass just prior to soil temperatures rising consistently above 0 °C. Following this, there was no large pulse of available nutrients, implying that competition for nutrients from roots results in the collapse of the microbial pool.  相似文献   
59.
The time-course of 14CO2 formation in chernozem soil samples enriched with 1- or 2-14C-2, 4-dichlorophenoxyacetic acid (50 μg g g?1 air-dry soil) was determined during incubation at 28°C. Except for the initial phase of decomposition, when the conversion of carboxyl carbon to 14CO2 predominated over that of carbon in position 2, the rates of mineralization of the two carbon atoms of the side chain of the herbicide molecule exhibited no significant difference. The exponential phase of 14CO2 evolution lasted from the 3rd to the 21st day of incubation; a semilogarithmic plot of its time dependence was strictly linear. The mineralization activity doubling time in this phase was 89.1 ± 3.6 h with 1-14CO-2, 4-D and 85.4 ± 5. l h with 2-14CO-2,4-D. An exponential decrease in mineralization activity was observed after 21 days, probably due to substrate exhaustion. The total proportion of radioactive carbon introduced into the soil in the form of 1- or 2-14CO-2,4-D and converted into 14CO2 during 31 days of incubation was about 33%. Plate counts of bacteria increased during 35 days of incubation from 2.14 × 108 to 2.8 × 108 g?1. The proportion of bacteria capable of producing 14CO2 from the labelled herbicide increased in this period from 4.1 to 86.1%. This increase is probably directly responsible for the immediate onset of mineralization of the herbicide in soil treated previously with it or in soil inoculated with a suspension prepared from a sample previously incubated with the herbicide.  相似文献   
60.
Wood ashes were traditionally used as a fertilizing agent from the very beginning of working land but the fertilizing quality varies according to the combusted biomass and also the industrial burning equipment. The differences between wood ash originated from fluid and classic boiler were investigated by X-ray powder diffraction (XRD), X-ray fluorescence spectrometry (XRF), differential thermal analysis (DTA), thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), and Mehlich 3 and deionized water extraction procedures in relation to extraction time. The results, especially of the SEM and chemical extractions, have demonstrated that the type of burning boiler determines the portions of the leachable nutrient elements. The silica and alumina ash content conducted by the elevated temperature transforms the main proportion of calcium and potassium into the insoluble feldspars. Due to this effect only a small amount of nutrients could be released and served as a fertilizing matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号