首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23298篇
  免费   433篇
  国内免费   853篇
林业   4458篇
农学   2368篇
基础科学   653篇
  3791篇
综合类   2819篇
农作物   2509篇
水产渔业   2075篇
畜牧兽医   2230篇
园艺   1357篇
植物保护   2324篇
  2024年   22篇
  2023年   120篇
  2022年   255篇
  2021年   352篇
  2020年   344篇
  2019年   318篇
  2018年   2932篇
  2017年   2978篇
  2016年   1436篇
  2015年   383篇
  2014年   375篇
  2013年   416篇
  2012年   1223篇
  2011年   2600篇
  2010年   2558篇
  2009年   1669篇
  2008年   1671篇
  2007年   1958篇
  2006年   377篇
  2005年   373篇
  2004年   251篇
  2003年   304篇
  2002年   204篇
  2001年   177篇
  2000年   185篇
  1999年   158篇
  1998年   135篇
  1997年   108篇
  1996年   111篇
  1995年   102篇
  1994年   89篇
  1993年   83篇
  1992年   64篇
  1991年   59篇
  1990年   43篇
  1989年   48篇
  1988年   42篇
  1987年   14篇
  1986年   10篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   7篇
  1977年   4篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1956年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Molecular genetics of race non-specific rust resistance in wheat   总被引:1,自引:0,他引:1  
Over 150 resistance genes that confer resistance to either leaf rust, stripe rust or stem rust have been catalogued in wheat or introgressed into wheat from related species. A few of these genes from the ‘slow-rusting’ adult plant resistance (APR) class confer partial resistance in a race non-specific manner to one or multiple rust diseases. The recent cloning of two of these genes, Lr34/Yr18, a dual APR for leaf rust and stripe rust, and Yr36, a stripe rust APR gene, showed that they differ from other classes of plant resistance genes. Currently, seven Lr34/Yr18 haplotypes have been identified from sequencing the encoding ATP Binding Cassette transporter gene from diverse wheat germplasm of which one haplotype is commonly associated with the resistance phenotype. The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.  相似文献   
992.
In order to implement reliable marker-assisted selection systems for the restorer-of-fertility locus (Ms) in onions (Allium cepa L.), simple PCR-based codominant markers linked to the Ms locus were developed. Based on the EST probe sequences of previously reported RFLP markers, full-length genomic sequences of the gene encoding putative oligopeptide transporter (OPT) was obtained by RACE. The first intron contained two 108 and 439-bp indel polymorphisms between the two Ms allele-linked OPT alleles. A simple PCR marker for OPT was developed by designing a primer pair on the flanking regions of the 108-bp indel which is created by two tandem repeats. The second simple PCR marker was developed from the EST probe encoding photosystem I subunit O (PsaO). Two 14 and 39-bp tandem repeats were identified from the 5′ upstream sequences of the PsaO-coding gene, which were isolated by genome walking. Three different compositions of these tandem repeats were identified from diverse onion germplasm. A primer set binding to the flanking sequence of these polymorphic repeats was used to amplify three different marker haplotypes. The OPT marker was tightly linked to the Ms locus at a distance of 1.5 cM, but the analysis of the linkage relationship showed little linkage disequilibrium between the marker and the Ms locus. Even so, these simple PCR markers are valuable tools for the marker-assisted selection of segregating individuals in onion F1 hybrid breeding programs.  相似文献   
993.
Association mapping identifies quantitative trait loci (QTLs) by examining the marker-trait associations that can be attributed to the strength of linkage disequilibrium between markers and functional polymorphisms across a set of diverse germplasm. In this study, association mapping was performed to detect QTL-linked and genome wide SSR markers linked to phenolic compounds of extraction meal in a population of 49 genetically diverse oilseed rape cultivars of dark-seeded, winter-type oilseed rape accessions. Correction for population structure was performed using 559 genome wide SSR markers. Results showed that seed colour is an important contributor to seed meal quality. Totally, 52 SSR markers linked to phenolic compounds were detected, five of them being QTL linked markers. Some of these markers were already mapped on Brassica napus chromosomes that contain known QTL controlling oilseed rape meal quality traits. Our results demonstrate that association mapping is a useful approach to complement and enhance previous QTL information for marker-assisted selection.  相似文献   
994.
Hordeum chilense Roem. et Schult. is a diploid wild South American barley that contains genes of interest for cereal breeding, many of them located on chromosome 1Hch. In the current study, two H. chilense-wheat addition lines with deletions in the 1Hch chromosome were used for sub-arm localization of five prolamin (glutenin and gliadin) loci and 33 EST-SSR marker loci on chromosome 1Hch. The two sets of markers were distributed across five sub-arm chromosome regions. Three glutenin loci (Glu-H ch 2, Glu-H ch 3, Glu-H ch 4) together with the gliadin locus Gli-H ch 1 were located on the distal 20% of the 1HchS arm, whereas the glutenin locus Glu-H ch 1 was on the proximal 88% region of 1HchL. Among 33 EST-SSR marker loci, 7 (21.2%) were on the 1HchS arm and, of them, 3 (9.1%) were on the distal 20% end and 4 (12.1%) on the proximal 80% region. The 26 loci (78.8%) on 1HchL were distributed across three different regions: 18 (78.8%) in the proximal 88%, 3 (9.1%) in the distal 12% and 5 (15.2%) in a region less than 12% from the distal end. The deletions in the 1Hch chromosome added to the common wheat background were thus shown to be useful for determining the sub-arm location of EST-SSR and prolamin loci. This could facilitate the identification of molecular markers linked to genes of agronomic interest and the isolation of such genes for use in common wheat improvement.  相似文献   
995.
The inheritance of two flowering traits of chrysanthemum, initial blooming time and the duration of flowering, was investigated using segregation within an F 1 population derived from a cross between the autumn-flowering ‘Yuhualuoying’ and the summer-flowering ‘Aoyunhanxiao’ cultivars. The analysis, based on a single segregating generation and the major gene plus polygene mixed inheritance model, showed that the inheritance of both traits was compatible with the presence of two pairs of major genes displaying additivity–dominance–epistasis, with additivity predominating. As the heritability of both pairs of major genes was high (initial blooming time ~65%, duration of flowering ~72%), it should be possible to select for both traits in early breeding generations. A marker-trait association analysis based on sequence-related amplified polymorphism (SRAP) genotyping uncovered 10 (initial blooming time) and 12 (duration of flowering) markers significantly associated with phenotype, cumulatively explaining, respectively, 46 and 54% of the variation. Some potentially useful markers were identified.  相似文献   
996.
Oil content of soybean was a valuable quantitative trait controlled by multiple genes. Eleven QTLs were detected by both CIM and MIM method with the population crossed between Charleston and Dong nong594 in recent 3 years (2007, 2008, 2009). Combining the QTLs collected over the past 20 years, an integrated map of oil-content major QTLs in soybean was established using soymap2, which was published in 2004, as a reference. Using the software BioMercator ver.2.1, QTLs were projected from their own maps onto the reference map. In total, ninety-eight QTLs were integrated into soymap2. A meta-analysis method was used to narrow down the confidence interval, and 20 consensus QTLs and their corresponding markers were obtained. Using a local version of GENSCAN, 10,137 sequences in the consensus QTL intervals were predicted. With BLAST, these predicted genes were compared to the International Protein Index database to mine the related genes. The results offer a basis for gene mining and molecular breeding in soybean.  相似文献   
997.
The genetic base of sunflower elite lines is very narrow, due to many years of selection and breeding. To broaden the genetic diversity of the cultivated sunflower, in 1995 73 wild sunflower populations were crossed with 3 cultivated lines (Testers), and 219 hybrid offspring’s were evaluated in the field. GCA and SCA effects were computed suggesting for all traits a genetic potential for improvement through selection. Study of the hybrids revealed that the wild accessions bear different genetic abilities to combine with the testers for traits of morphological architecture, phenology and yield (seed weight and seed oil). The variance due to GCA and SCA showed that gene action was additive for days to flowering, branching and plant height. Genotypes derived from the same geographic origin may have either good or poor general combing ability. The correlation between GCA and per se genotype performance was positive for all traits except for seed oil content. This was the first attempt to evaluate wild-cultivated hybrids in sunflower on a large scale and will be the starting point for the management of hybrid Helianthus annuus populations for breeding. GCA and SCA estimations will facilitate the definition of strategies to manage and exploit the natural diversity for this crop.  相似文献   
998.
Genetic impacts under selective breeding of agricultural crops have been frequently investigated with molecular tools, but inadequate attention has been paid to assess genetic changes under long-term genetic improvement of plant traits. Here we analyzed allelic changes with respect to wheat trait improvement in 78 Canadian hard red spring wheat cultivars released from 1845 to 2004 and screened with 370 mapped SSR markers. The improvements in quality, maturity, yield, disease, stem rust, leaf rust, sawfly resistance, and agronomy were considered. A total of 154 (out of 370) loci with significant allelic changes across 21 chromosomes were detected in the 78 wheat cultivars separated into improved versus non-improved groups for eight traits. The number of significant loci for improving a trait ranged from four for quality to 68 for yield and averaged 35. Many more loci with significant allelic reduction for improving a trait were detected than those with significant allelic increase. Selection for early maturity introduced more alleles, but improving the other traits purged more alleles. Significantly lower numbers of unique alleles were found in the cultivars with improved traits. The distributions of unique allele counts also varied greatly across the 21 chromosomes with respect to trait improvement. Significant SSR variation between two cultivar groups was observed for improvement in seven traits, but not in stem rust. The proportional SSR variation residing between two groups ranged from 0.014 to 0.118. The proportional SSR variations within the improved cultivar groups consistently were much lower than those within the non-improved groups. These findings clearly demonstrate the association between allelic changes and wheat trait improvements and are useful for understanding the genetic modification of the wheat genome by long-term wheat breeding.  相似文献   
999.
This paper offers projections of potential effects of climate change on rusts of wheat and how we should factor in a changing climate when planning for the future management of these diseases. Even though the rusts of wheat have been extensively studied internationally, there is a paucity of information on the likely effects of a changing climate on the rusts and their influence on wheat production. Due to the lack of published empirical research we relied on the few published studies of other plant diseases, our own unpublished work and relevant information from the vast literature on rusts of wheat to prepare this overview. Three broad areas of potential risks from a changing climate were described: increased loss from wheat rusts, new rust pathotypes evolving faster and the reduced effectiveness of rust resistances. Increased biomass of wheat crops grown in the presence of elevated CO2 concentrations and higher temperatures will increase the leaf area available for attack by the pathogen leading to increased inoculum production. If changed weather conditions were to accelerate the life cycle of a pathogen, the increased inoculum can lead to severe rust epidemics in many environments. Likewise should the effects of climate change result in more conducive conditions for rust development there will also be a corresponding increase in the rate of evolution of new pathotypes which could increase the rate of appearance of new virulences. The effectiveness of some rust resistance genes is influenced by temperature and crop development stage. Climate change may directly or indirectly influence the effectiveness of some resistance genes but this can not be ascertained due to a complete lack of knowledge. Since disease resistance breeding is a long term strategy it is important to determine if any of the important genes may become less effective due to climate change. Studies must be made to acquire new information on the rust disease triangle to increase the adaptive capacity of wheat under climate change. Leadership within the Borlaug Global Rust Initiative (BGRI) is needed to broker research on rust evolution and the durability of resistance under climate change.  相似文献   
1000.
Five inbred lines, 10 single cross maize (Zea mays L.) hybrids and two standard cultivars as check were used to study the combining abilities and heterosis under three environmental conditions. Random amplified polymorphic DNAs (RAPDs) markers were used to study the genetic diversity (GD) and further to analyze relationship of RAPDs based GD with combining ability and heterosis in short duration maize. Spearman’s rank correlation coefficients and linear regressions were analyzed to identify the most important factor determining heterosis and per se performance of the hybrids. Variances due to general combining ability (GCA), specific combining ability (SCA) and their interactions with environment were found to be significant. Twenty random primers generated 179 RAPD fragments. Of these, 102 RAPD fragments were polymorphic. GD was determined using Jaccard’s similarity coefficient, and a dendogram was constructed by UPGMA cluster analysis. The RAPDs based GD exhibited non-significant negative or positive association, non-significant linear regression along with very low coefficient of determination (R 2) with SCA, high and mid parent heterosis (HP and MP) and per se performance of the hybrids. Significant positive correlations and regressions along with high coefficients of determination were recorded for SCA with HP, MP and per se performance of the hybrids. The HP and MP also established significant positive association and linear regression along with high coefficient of determination with per se performance of hybrids whereas the parental mean did not establish any significant correlations with the GD, HPH, MPH and grain yield of F1s. The present investigation, therefore, did not find any role of RAPDs based GD in determining hybrid heterosis and hybrid performance in short duration sub-tropical maize. The SCA, however, has emerged as the most important factor in determination of heterosis as well as per se performance of the hybrids in short duration maize.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号