首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
  国内免费   4篇
水产渔业   14篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
排序方式: 共有14条查询结果,搜索用时 8 毫秒
11.
人工饲料对刺参幼参生长贡献的碳稳定同位素法分析   总被引:3,自引:2,他引:1  
为了解不同养殖密度下刺参对人工饲料的吸收利用情况,实验采用碳稳定同位素法研究人工饲料对刺参幼参生长的食物贡献率.实验采用室内水族箱与刺参养殖池塘内围隔相结合的方法,刺参幼参的初始体质量为(4.78 ±0.58)g,水族箱(100 cm ×60 cm ×60 cm)内10头幼参用人工饲料按5%刺参初始体质量(湿重)连续喂养60 d;参池围隔(长8.0m×宽8.0m×高1.9m)内,投喂的实验组幼参在5、10、15、25和35 ind/m2的养殖密度下经人工饲料驯化后按5%刺参初始体质量(湿重)连续喂养6d,同时设不投饲的对照组,各4个重复.结果显示,水族箱内的刺参幼参的体质量经人工饲料饲喂60 d后均显著增加,其特定生长率(SGR)为(2.73±0.57) %/d,其稳定碳同位素比值(δ13 C值)由初始时的-18.633‰±0.552‰显著变化为-19.466‰±0.316‰(P =0.032).围隔实验中,实验组和对照组刺参的最终体质量都呈现不断减小的趋势,但同一密度的实验组刺参最终体质量均高于对照组;实验组刺参幼参的δ13C值随着养殖密度的增大由-13.262‰±0.183‰减小为-15.102‰±0.189‰,人工饲料对幼参的食物贡献在最低密度5 ind/m2下为最小值3.78% ±2.98%,在最高密度35 ind/m2下达到最大值为29.48%±3.31%.研究表明,利用碳稳定同位素法可有效分析刺参幼参的生长与摄食,人工饲料对刺参生长的贡献率随着养殖密度的增大显著增大(P<0.01),但比常见鱼虾等水产养殖品种要低得多,这与刺参自身摄食生理学特点、饲料质量、养殖模式及环境等多种因素相关.  相似文献   
12.
为研究食源色氨酸添加量对不同密度下刺参生长和代谢酶活性的影响,在水温(17±0. 5)℃下将初始体质量(湿重)为(3. 5±0. 1) g的刺参(Apostichopus japonicus Selenka)饲养在40 L(53 cm×28 cm×34 cm)的玻璃水族箱中,密度分别为4(L组)、8(ML组)、16(MH组)和32(H组)头/40 L,分别投喂添加0%、1%、3%和5%色氨酸的饲料,饲养75 d,每个处理组设4个重复。试验测定了刺参体质量变化和代谢酶活性,结果显示:随着养殖密度增加,刺参生物量增加,刺参增重率下降。最大生物量为196. 1 g(3%色氨酸,H组),最低增重率为35. 9%(5%色氨酸,H组);与对照组相比,饲料中添加3%色氨酸处理组刺参生长更快;在各养殖密度下,添加3%色氨酸处理组的谷丙转氨酶(ALT)、谷草转氨酶(AST)、乳酸脱氢酶(MDH)和苹果酸脱氢酶(LDH)酶活力低于其他处理组。高密度(H组)下,添加3%色氨酸处理组的ALT、AST、MDH和LDH活力分别为5. 56 U/g prot、1. 85 U/g prot、0. 17 U/mg prot、64 U/g prot,低于对照组。研究表明,添加1%~3%食源色氨酸可以缓解高密度养殖对刺参的胁迫,提高刺参生长率。  相似文献   
13.
采用陆基围隔实验法,于2009年6~10月调查并分析了草鱼复合养殖系统上覆水和沉积物间隙水营养盐(NH4-N,NO3-N,NO2-N,PO4-P)的时空分布及沉积物总氮(TN)、总磷(TP)和总碳(TC)含量的变化.结果显示,(1)草鱼复合养殖系统上覆水中NH4-N,NO3-N,NOz-N和PO4-P的 含量波动范围分别为0.056~1.499、0.022~0.228、0.049~3.903、0.003~1.882 mg/L,间隙水中营养盐的平面分布中,NH4-N在总无机氮(DIN)中所占比例随着养殖时间的增加而增加,不同复合养殖系统的营养盐垂直分布特征不同,规律也不明显.(2)实验结束与实验开始时相比,沉积物中TN和TP含量无明显变化,但TC含量显著降低,以混养模式(GSC)的减少幅度最大.结果表明,在本实验条件下,草鱼、鲢鱼与鲤鱼复合养殖系统可有效降低养殖过程中有机物的积累,降低底层中潜在释放的NH4-N含量,是一种较为合理的草鱼复合养殖模式.  相似文献   
14.
为探究大西洋鲑(Salmo salar)的胃排空特征及其模型, 本研究采用胃含物分析法对两种规格[(176.15±27.52) g 和(323.33±43.91) g]大西洋鲑进行胃排空实验。经暂养 27 d 适应后, 两种规格大西洋鲑停食 48 h, 分别在饱食投喂后第 0、3、6、9、12、18 和 24 小时测定其胃含物湿重和干重, 并用 4 种数学模型拟合; 在筛选出其最佳胃排空模型后, 计算最佳干重模型下 80%干重胃排空时间作为其最适投喂频率。结果表明, 与湿重模型相比, 干重胃排空模型能更准确反映大西洋鲑胃排空时间的状况。小规格和大规格大西洋鲑的最佳干重胃排空模型分别为指数模型和平方根模型, 其 80%干重胃排空时间分别为 12.23 h 和 18.06 h。小规格大西洋鲑胃排空比大规格更快, 这可能是因为小规格大西洋鲑消化前期干燥饲料被水分软化的时间更短。本研究结果可为大西洋鲑智能投喂系统提供生物学参数, 为实际生产中智能投喂策略提供理论参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号