首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16596篇
  免费   25篇
林业   3625篇
农学   1306篇
基础科学   144篇
  2777篇
综合类   715篇
农作物   2109篇
水产渔业   1820篇
畜牧兽医   1145篇
园艺   1112篇
植物保护   1868篇
  2023年   2篇
  2022年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   2751篇
  2017年   2712篇
  2016年   1187篇
  2015年   78篇
  2014年   23篇
  2013年   36篇
  2012年   799篇
  2011年   2133篇
  2010年   2107篇
  2009年   1260篇
  2008年   1320篇
  2007年   1585篇
  2006年   33篇
  2005年   97篇
  2004年   105篇
  2003年   155篇
  2002年   59篇
  2001年   8篇
  2000年   40篇
  1999年   5篇
  1994年   3篇
  1993年   12篇
  1992年   8篇
  1991年   1篇
  1990年   2篇
  1989年   7篇
  1988年   14篇
  1987年   3篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1979年   2篇
  1977年   5篇
  1975年   2篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   10篇
  1969年   5篇
  1968年   8篇
  1967年   1篇
  1966年   4篇
  1965年   1篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
61.
The use of overhead trellis systems for the production of dry-on-vine (DOV) raisins and table grapes in California is expanding. Studies were conducted from 2006 to 2009 using Thompson Seedless grapevines grown in a weighing lysimeter trained to an overhead arbor trellis and farmed as DOV raisins for the first two years and for use as table grapes thereafter. Maximum canopy coverage for the two lysimeter vines across years was in excess of 80 %. Seasonal (15 March–31 October) evapotranspiration for the lysimeter vines (ETLys) was 952 mm in 2007 (farmed as DOV raisins) and 943 and 952 mm (when farmed as table grapes). The maximum crop coefficient (K cLys) across all 4 years ranged from 1.3 to 1.4. These maximum values were similar to those estimated using the relationship where K c is a function of the amount of shaded area measured beneath the canopy at solar noon (K c = 0.017 × percent shaded area). Covering the lysimeter’s soil surface with plastic (and then removing it) numerous times during the 2009 growing season (1 June–14 September) reduced ETLys from an average of 6.4 to 5.6 mm day?1 and the K c from 1.07 to 0.93. A seasonal basal K c (K cb) was calculated for grapevines using an overhead trellis system with a 13 % reduction in the K cLys across the growing season.  相似文献   
62.
In the High Plains, corn (Zea mays L.) is an important commodity for livestock feed. However, limited water resources and drought conditions continue to hinder corn production. Drought-tolerant (DT) corn hybrids could help maintain high yields under water-limited conditions, though consistent response of such hybrids is unverified. In this two-year study, the effects of three irrigation treatments were investigated for a DT and conventional maize hybrid, Pioneer AQUAMax P0876HR and Pioneer 33Y75, respectively. In 2013, the drier of the 2 years, irrigation amounts and crop water use (ETc) were greater for the conventional hybrid, but grain water use efficiency (WUE) and harvest index were significantly greater for the DT hybrid. In 2014, grain yields and WUE were not significantly different between hybrids. However, irrigation amounts, ETc and biomass yields were greater for the conventional hybrid. Results from both years indicate that the DT hybrid required less water to maximize grain yield as compared to the conventional hybrid. Producing relatively high yields with reduced amounts of water may provide a means for producers to continue corn production in a semiarid environment with declining water supplies.  相似文献   
63.
Intercropping, drip irrigation, and the use of plastic mulch are important management practices, which can, when utilized simultaneously, increase crop production and save irrigation water. Investigating soil water dynamics in the root zone of the intercropping field under such conditions is essential in order to understand the combined effects of these practices and to promote their wider use. However, not much work has been done to investigate soil water dynamics in the root zone of drip-irrigated, strip intercropping fields under plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate soil water contents (SWC) at different locations, for different irrigation treatments, and with respect to dripper lines and plants (corn and tomatoes). Experimental data were then used to calibrate the HYDRUS (2D/3D) model. Comparison between experimental data and model simulations showed that HYDRUS (2D/3D) described different irrigation events and SWC in the root zone well, with average relative errors of 10.8, 9.5, and 11.6 % for irrigation treatments T1, T2, and T3, respectively, and with corresponding root mean square errors of 0.043, 0.035, and 0.040 cm3 cm?3, respectively. The results showed that the SWC in the shallow root zone (0–40 cm) was lower under non-mulched locations than under mulched locations, irrespective of the irrigation treatment, while no significant differences in the SWC were observed in the deeper root zone (40–100 cm). The SWC in the shallow root zone was significantly higher for the high irrigation treatment (T1) than for the low irrigation treatment, while, again, no differences were observed in the deeper root zone. Simulations of two-dimensional SWC distributions revealed that the low irrigation treatment (T3) produced serious severe water stress (with SWCs near the wilting point) in the 30–40 cm part of the root zone, and that using separate drip emitter lines for each crop is well suited for producing the optimal soil water distribution pattern in the root zone of the intercropping field. The results of this study can be very useful in designing an optimal irrigation plan for intercropped fields.  相似文献   
64.
A model for optimal operation of water supply/irrigation systems of various water quality sources, with treatment plants, multiple water quality conservative factors, and dilution junctions is presented. The objective function includes water cost at the sources, water conveyance costs which account for the hydraulics of the network indirectly, water treatment cost, and yield reduction costs of irrigated crops due to irrigation with poor quality water. The model can be used for systems with supply by canals as well as pipes, which serve both drinking water demands of urban/rural consumers and field irrigation requirements. The general nonlinear optimization problem has been simplified by decomposing it to a problem with linear constraints and nonlinear objective function. This problem is solved using the projected gradient method. The method is demonstrated for a regional water supply system in southern Israel that contains 39 pipes, 37 nodes, 11 sources, 10 agricultural consumers, and 4 domestic consumers. The optimal operation solution is described by discharge and salinity values for all pipes of the network. Sensitivity of the optimal solution to changes in the parameters is examined. The solution was found to be sensitive to the upper limit on drinking water quality, with total cost being reduced by 5% as the upper limit increases from 260 to 600 mg Cl l–1. The effect of income from unit crop yield is more pronounced. An increase of income by a factor of 20 results in an increase of the total cost by a factor of 3, thus encouraging more use of fresh water as long as the marginal cost of water supply is smaller than the marginal decrease in yield loss. The effect of conveyance cost becomes more pronounced as its cost increases. An increase by a factor of 100 results in an increase of the total cost by about 14%. The network studied has a long pipe that connects two distinct parts of the network and permits the supply of fresh water from one part to the other. Increasing the maximum permitted discharge in this pipe from 0 to 200 m3 h–1 reduces the total cost by 11%. Increasing the maximum discharge at one of the sources from 90 to 300 m3 h–1 reduces the total cost by about 8%.  相似文献   
65.
A modern computer-based simulation tool (WaterMan) in the form of a game for on-farm water management was developed for application in training events for farmers, students, and irrigators. The WaterMan game utilizes an interactive framework, thereby allowing the user to develop scenarios and test alternatives in a convenient, risk-free environment. It includes a comprehensive soil water and salt balance calculation algorithm. It also employs heuristic capabilities for modeling all of the important aspects of on-farm water management, and to provide quantitative performance evaluations and practical water management advice to the trainees. Random events (both favorable and unfavorable) and different strategic decisions are included in the game for more realism and to provide an appropriate level of challenge according to player performance. Thus, the ability to anticipate the player skill level, and to reply with random events appropriate to the anticipated level, is provided by the heuristic capabilities used in the software. These heuristic features were developed based on a combination of two artificial intelligence approaches: (1) a pattern recognition approach and (2) reinforcement learning based on a Markov decision processes approach, specifically the Q-learning method. These two approaches were combined in a new way to account for the difference in the effect of actions taken by the player and action taken by the system in the game world. The reward function for the Q-learning method was modified to reflect the suggested classification of the WaterMan game as what is referred to as a partially competitive and partially cooperative game.  相似文献   
66.

Purpose  

An in situ phytoremediation trial was developed in order to investigate the function of alfalfa during a 2-year bioremediation of an agricultural soil contaminated with polychlorinated biphenyls (PCBs). The study was conducted with the aim to better understand the application potential of PCB phytoremediation at field scale.  相似文献   
67.
Total gaseous mercury (TGM) fluxes from the forest floor and a boreal wetland were measured by a flux chamber technique coupled with an automatic mercury vapour analyser. The fluxes were measured at three sampling sites in southern Finland, 61°14′ N, 25°04′ E in summer 2007, with additionally in situ TGM concentrations in the air at one of the sites and mercury bulk deposition at another. Most of the flux data were collected during the daytime. At one of the sites, diurnal flux behaviour was studied, and a clear cycle with an afternoon maximum and a night minimum was observed. The highest emissions (up to 3.5 ng m−2 h−1) were observed at the forest floor site having a moss and grass cover. At the wetland and litter-rich forest floor sites, the emissions were below 1 ng m−2 h−1 and sometimes negative (down to −1.0 ng m−2 h−1), indicating mercury uptake. The measured average fluxes in August were 0.9 ± 1.1 and 0.2 ± 0.3 ng m−2 h−1 for the forest floor sites and wetland sites, respectively. The flux data were compared with the mercury bulk deposition, which proved to be of the same magnitude, but opposite in sign. At the mossy forest floor site, the extrapolated TGM emissions were 130% of the Hg deposition in August 2007. Comparison with other studies showed that the fluxes in background areas are relatively uniform, regardless of measurement site location and method used. Airborne TGM remained at the background level during the study, with an average value of 1.3 ± 0.2 ng m−3; it frequently showed a diurnal cycle pattern.  相似文献   
68.

Purpose  

Soil contamination by multiple organic and inorganic contaminants is common but its remediation by hyperaccumulator plants is rarely reported. The growth of a cadmium (Cd) hyperaccumulator Sedum alfredii and removal of contaminants from Cd and polycyclic aromatic hydrocarbons (PAHs) co-contaminated soil were reported in this study.  相似文献   
69.
Combinations of sequential anaerobic and aerobic process enhance the treatment of textile wastewater. The aim of this study was to investigate the treatment of diazo dye Reactive Black 5 (RB5)-containing wastewater using granular activated carbon (GAC)–biofilm sequencing batch reactor (SBR) as an integration of aerobic and anaerobic process in a single reactor. The GAC–biofilm SBR system demonstrated higher removal of COD, RB5 and aromatic amines. It was observed that the RB5 removal efficiency improved as the concentration of co-substrate in the influent increased. The alternative aeration introduced into the bioreactor enhanced mineralization of aromatic amines. Degradation of RB5 and co-substrate followed second-order kinetic and the constant (k 2) values for COD and RB5 decreased from 0.002 to 0.001 and 0.004 to 0.001 l/mg h, respectively, as the RB5 concentration increased from 100 to 200 mg/l in the GAC–biofilm SBR system.  相似文献   
70.

Purpose

Soil microorganisms are important in the cycling of plant nutrients. Soil microbial biomass, community structure, and activity are mainly affected by carbon substrate and nutrient availability. The objective was to test if both the overall soil microbial community structure and the community-utilizing plant-derived carbon entering the soil as rhizodeposition were affected by soil carbon (C) and nitrogen (N) availability.

Materials and methods

A 13C-CO2 steady-state labeling experiment was conducted in a ryegrass system. Four soil treatments were established: control, amendment with carboxymethyl cellulose (CMC), amendment with ammonium nitrate (NF), combined CMC and NF. Soil phospholipid fatty acid (PLFA) and 13C labeling PLFA were extracted and detected by isotope ratio mass spectrometer.

Results and discussion

The combined CMC and NF treatment with appropriate C/N ratio (20) significantly enhanced soil microbial biomass C and N, but resulted in lower soil inorganic N concentrations. There was no significant difference in soil PLFA profile pattern between different treatments. In contrast, most of the 13C was distributed into PLFAs 18:2ω6,9c, 18:1ω7c, and 18:1ω9c, indicative of fungi and gram-negative bacteria. The inorganic-only treatment was distinct in 13C PLFA pattern from the other treatments in the first period of labeling. Factor loadings of individual PLFAs confirmed that gram-positive bacteria had relatively greater plant-derived C contents in the inorganic-only treatment, but fungi were more enriched in the other treatments.

Conclusions

Amendments with CMC can improve N transformation processes, and the ryegrass rhizodeposition carbon flux into the soil microbial community is strongly modified by soil N availability.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号