首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1702篇
  免费   115篇
  国内免费   2篇
林业   68篇
农学   29篇
基础科学   16篇
  261篇
综合类   300篇
农作物   53篇
水产渔业   89篇
畜牧兽医   810篇
园艺   43篇
植物保护   150篇
  2023年   7篇
  2022年   8篇
  2021年   20篇
  2020年   32篇
  2019年   26篇
  2018年   25篇
  2017年   27篇
  2016年   34篇
  2015年   33篇
  2014年   30篇
  2013年   86篇
  2012年   96篇
  2011年   120篇
  2010年   79篇
  2009年   46篇
  2008年   124篇
  2007年   113篇
  2006年   105篇
  2005年   106篇
  2004年   91篇
  2003年   86篇
  2002年   109篇
  2001年   28篇
  2000年   29篇
  1999年   17篇
  1998年   20篇
  1997年   15篇
  1996年   18篇
  1995年   8篇
  1994年   10篇
  1993年   13篇
  1992年   21篇
  1991年   14篇
  1990年   11篇
  1989年   21篇
  1988年   6篇
  1987年   15篇
  1986年   16篇
  1985年   14篇
  1984年   14篇
  1983年   15篇
  1982年   7篇
  1981年   8篇
  1980年   5篇
  1979年   7篇
  1978年   9篇
  1977年   11篇
  1974年   7篇
  1969年   5篇
  1968年   6篇
排序方式: 共有1819条查询结果,搜索用时 15 毫秒
101.
The cation exchange capacity (CEC) of a soil depends on the type and amount of both mineral and organic surfaces. Previous studies that have sought to determine the relative contribution of organic matter to total soil CEC have not addressed differences in soil organic matter (SOM) composition that could lead to differences in CEC. The objectives of this study were (1) to compare the CEC of two distinct SOM pools, the “light fraction (LF)” composed of particulate plant, animal, and microbial debris, and the “heavy fraction (HF)” composed of mineral-bound organic matter; and (2) to examine the effects of differences in aboveground vegetation on CEC. Soil samples were collected from four paired grassland/conifer sites within a single forested area and density fractionated. LF CEC was higher in conifer soils than in grassland soils, but there was no evidence of an effect of vegetation on CEC for the HF or bulk soil. LF CEC (but not HF CEC) correlated well with the C concentration in the fraction. The mean CEC of both fractions (per kg fraction) exceeded that of the bulk soil; thus, when the LF and HF CEC were combined mathematically by weighting values for each fraction in proportion to dry mass, the resulting value was nearly twice the measured CEC of bulk soil. On a whole soil basis, the HF contributed on average 97% of the CEC of the whole soil, although this conclusion must be tempered given the inflation of CEC values by the density fractionation procedure.  相似文献   
102.
Effects of vegetation and nutrient availability on potentail denitrification rates were studied in two volcanic, alluvial-terrace soils in lowland Costa Rica that differ greatly in weathering stage and thus in availability of P and base cations. Potential denitrification rates were significantly higher in plots where vegetation had been left undisturbed than in plots where all vegetation had been removed continuously, and were higher on the less fertile of the two soils. The potential denitrification rates were correlated strongly with respiration rates, levels of mineralizable N, microbial biomass, and moisture content, and moderately well with concentrations of extractable NH inf4 sup+ , Kjeldahl N, and total C. In all plots, denitrification rates were stimulated by the removal of O2 and by the addition of glucose but not by the addition of water or NO inf3 sup- .This is Paper 2772 of the Forest Research Laboratory, Oregon State University  相似文献   
103.
Concentrations of Cl, total ammonia (TNH3), NO3 plus NO2, total P (TP), and soluble reactive P (SRP) were measured at two sites, located 5 km apart, on Ninemile Creek, New York, for a period of more than 8 mo. The sites bound the most recently formed Solvay waste beds, associated with the production of soda ash, that adjoin the creek. Concentrations of Cl and T-NH3 increased on average by factors of 16.1 and 7.6, respectively, over the monitored stream reach. The estimated average loadings of these materials to the stream over this reach were 2.3 × 105 and 1.2 × 102 kg d?1, respectively. These inputs are attributable to the Solvay waste beds. The loading of Cl from this source has not changed significantly over a 4 yr period since the closure of the soda ash manufacturing facility. This is the single largest source of Cl, and the second largest source of T-NH3, to polluted Onondaga Lake. Profiles of Cl in the lake indicated that at times the creek inflow plunges to subsurface layers as a result of its elevated density. This is at least in part a result of the creek's ionic enrichment. The concentration of SRP decreased by a factor of 2.0 on average over the study reach, probably due to adsorption to the CaCO3 deposits that cover the stream bed in this area. However, the TP load from the creek to the lake is not significantly affected by this phenomenon.  相似文献   
104.
Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (−1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation.  相似文献   
105.
Chronic, excessive nitrogen deposition is potentially an important ecological threat to forests of the greater Sierra Nevada in California. We developed a model for ammonia bioindication, a major nitrogen pollutant in the region, using epiphytic macrolichens. We used non-metric multidimensional scaling to extract gradients in lichen community composition from surveys at 115 forested sites. A strong ammonia deposition gradient was detected, as evidenced by a high linear correlation with an index of ammonia indicator species conventionally known as “nitrophytes” (r = 0.93). This gradient, however, was confounded by elevation (r = ?0.54). We evaluated three statistical techniques for controlling the influence of elevation on nitrophytes: simple linear regression, nonlinear regression, and nonparametric regression. We used the unstandardized residuals from nonlinear regression to estimate relative ammonia deposition at each plot, primarily because this model had the best fit (r 2 = 0.33), desirable asymptotic properties, and it is easy to apply to new data. Other possible sources of noise in the nitrophyte-ammonia relationship, such as substrate pH and acidic deposition, are discussed. Lichen communities indicated relatively high deposition to forests of the southern Sierra Nevada, the Modoc Plateau, as well as in stands near urban areas. Evidence of elevated ammonia was also detected for popular recreation areas such as Sequoia and Yosemite National Parks. Lichen communities from forests in the Tahoe basin, northern Sierra Nevada, southern Cascades, and eastern Klamath Range appeared considerably less impacted. This model will be used for continual assessment of eutrophication risks to forest health in the region.  相似文献   
106.
Orchard and vineyard producers conduct preplant site evaluations to help prevent planting permanent tree and vine crops on lands where the crop will not perform to its highest potential or attain its full life expectancy. Physical soil characteristics within specific soil profiles and spatially throughout an orchard influence decisions on land preparation, irrigation system selection, horticultural choices, and nutrient management. Producers depend on soil surveys to help them understand the soil characteristics of the land and may be interested in technology that provides additional information. Electromagnetic induction (EM38) and four-probe soil resistance sensors (VERIS) are being used in combination with global positioning systems to map spatial variability of soils using apparent soil electrical conductivity (ECa). The hypothesis evaluated in this study is whether rapid, in situ, and relatively low-cost methods of measuring ECa (EM38 and VERIS) can effectively identify and map physical soil variability in non-saline soils. The supposition is that in non-saline soils, ECa levels will relate well to soil texture and water-holding capacity and can be used to map physical soil variability. In turn, the information can be used to guide decisions on preplant tillage, irrigation system design, water and nutritional management, and other horticultural considerations. Two sites in the Sacramento Valley were mapped each with EM38 and VERIS methods. Site-specific management zones were identified by each provider on ECa maps for each site, and then soil samples were collected by University of California researchers to verify these zones. Results showed that on non-saline soils, ECa measured with both EM38 and VERIS correlate with physical soil properties such as gravel, sand, silt, and clay content but the relationship between conductivity and these physical soil properties varied from moderately strong to weak. The strength of the correlation may be affected by several factors including how dominant soil texture is on conductivity relative to other soil properties and on methods of equipment operation, data analysis and interpretation. Overall, the commercial providers of ECa surveys in this study delivered reasonable levels of accuracy that were consistent with results reported in previous studies. At one site, an ECa map developed with VERIS provided more detail on physical soil variability to supplement published soil surveys and aided in the planning and development of a walnut orchard. At a second site, almond yield appeared to correlate well with distinctly different soil zones identified with EM38 mapping.  相似文献   
107.
108.
Membrane transporters that use energy stored in sodium gradients to drive nutrients into cells constitute a major class of proteins. We report the crystal structure of a member of the solute sodium symporters (SSS), the Vibrio parahaemolyticus sodium/galactose symporter (vSGLT). The approximately 3.0 angstrom structure contains 14 transmembrane (TM) helices in an inward-facing conformation with a core structure of inverted repeats of 5 TM helices (TM2 to TM6 and TM7 to TM11). Galactose is bound in the center of the core, occluded from the outside solutions by hydrophobic residues. Surprisingly, the architecture of the core is similar to that of the leucine transporter (LeuT) from a different gene family. Modeling the outward-facing conformation based on the LeuT structure, in conjunction with biophysical data, provides insight into structural rearrangements for active transport.  相似文献   
109.
We analyzed the technical basis for a major global program to reduce disease among the poor. Effective interventions exist against the few diseases which most account for excess mortality among the poor. Achieving high coverage of effective interventions requires a well-functioning health system, as well as overcoming a set of financial and nonfinancial constraints. The annual incremental cost would be between $40 billion and $52 billion by 2015 in 83 low-income and sub-Saharan African countries. Such a program is feasible and would avoid millions of child, maternal, and adult deaths annually in poor countries.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号