首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2926篇
  免费   137篇
  国内免费   12篇
林业   238篇
农学   143篇
基础科学   27篇
  635篇
综合类   451篇
农作物   119篇
水产渔业   205篇
畜牧兽医   1017篇
园艺   74篇
植物保护   166篇
  2024年   5篇
  2023年   13篇
  2022年   25篇
  2021年   53篇
  2020年   79篇
  2019年   83篇
  2018年   82篇
  2017年   81篇
  2016年   96篇
  2015年   63篇
  2014年   113篇
  2013年   166篇
  2012年   164篇
  2011年   204篇
  2010年   147篇
  2009年   132篇
  2008年   216篇
  2007年   192篇
  2006年   188篇
  2005年   158篇
  2004年   153篇
  2003年   146篇
  2002年   155篇
  2001年   37篇
  2000年   28篇
  1999年   23篇
  1998年   21篇
  1997年   18篇
  1996年   18篇
  1995年   38篇
  1994年   15篇
  1993年   16篇
  1992年   14篇
  1991年   9篇
  1990年   9篇
  1989年   7篇
  1988年   9篇
  1987年   8篇
  1985年   13篇
  1984年   7篇
  1983年   10篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1978年   3篇
  1977年   6篇
  1976年   5篇
  1974年   4篇
  1971年   5篇
  1955年   3篇
排序方式: 共有3075条查询结果,搜索用时 15 毫秒
21.
Summary A simulation model capable of predicting the yield response of corn to a limited water supply was developed by combining two existing mathematical models. The resulting computer model was evaluated using experimental data taken under a wide range of soil moisture conditions. The soil profile water balances was simulated using SWATRE and SUCROS was used to model the crop growth in response to environmental conditions. In addition to the integration of the two existing models, some minor changes were made to each in an effort to improve the accuracy of the combined models. The model input parameters were derived entirely from published literature. The experimental data necessary for model validation were available from irrigation studies at the Sandhills Agricultural Laboratory of the University of Nebraska. These experiments not only provided the required input soil and climatic data, but also the observed irrigation levels, soil moisture distributions and crop yield required for model validation. Initial evaluation of the computer model indicates that the combined model adequately describes crop evapotranspiration, soil moisture extraction and crop yield under a fairly wide range of soil moisture stress. Additional modifications for the prediction of leaf area expansion and senescence, especially under moisture stress, are needed to improve the accuracy of the model.  相似文献   
22.
The inability to properly maintain irrigation systems over time forced the Government of Indonesia (GOI) to seek cost recovery from water users through introduction of an irrigation service fee. The plan is to introduce this fee in all of the technical irrigation systems of Indonesia, covering about 4 million hectares, over a 12 year period. Design and Introduction of this service fee in 4 pilot areas of the 4 major rice producing provinces (West, Central and East Java, and South Sulawesi) during 1989–1991 has shown that users are willing to pay. Results of first ISF collection from over 11,000 farmers in Central and East Java in pilot systems was an encouraging 95%. However that acceptance to pay by users depends on their structured and systematic involvement in defining systems needs. They need to understand a differentiation in payment if service levels are different. They appreciate use of collected funds in the system where collected. They understand the organization of water users associations but this requires their active role in fee determination and collection. They understand the establishment of federations of these associations. ISF requires also active involvement of Local Government officials as facilitators and intermediaries between service receivers (the water users) and service providers (personnel of the Public Works irrigation department) in the introduction period. This article describes the experience of the first 21 months of the ISF project, the concept developed, the principles used as basis for ISF, the introduction at the field level, issues related to acceptance by users and by the institutions involved, and the first results.Abbreviations/Acronyms DGWRD Directorate General of Water Resources Development (Ministry of Public Works) - EOM Efficient Operation and Maintenance - Gabungan group of WUAs - IPAIR Indonesian abbreviation for ISF - ISF Irrigation Service Fee - Juru gate keeper - PBB land tax on irrigated lands - PPL agricultural field extension agent - P3A Indonesian abbreviation for Water Users Associations - PU Indonesian abbreviation for Public Works - SM Special Maintenance - WUA Water Users Associations  相似文献   
23.
Hyperspectral remote sensing for monitoring horticultural production systems requires the understanding of how plant physiology, canopy structure, management and solar elevation affect the retrieved canopy reflectance during different stages of the phenological cycle. Hence, the objective of this study was to set up and to interpret a hyperspectral time series for a mature and healthy citrus orchard in the Western Cape province of South Africa considering these effects. Based on the remotely sensed data, biophysical parameters at the canopy level were derived and related to known observed physiological and phenological changes at the leaf level and to orchard management. Fractions of mature fruit, flowers, and sunburnt leaves were considered, and indices related to canopy structure chlorophyll content and canopy water status were calculated.Results revealed small cover fractions of mature fruit, flowers and sunburnt leaves of respectively 2.1%, 3.1% and 7.0%, but the high spectral contrast between flowers and leaves allowed a successful classification of flowering intensity. Furthermore, it was shown that canopy level time series of vegetation indices were sensitive to changes in solar elevation and soil reflectance which could be reduced by applying an empirical soil line correction for the most affected indices. Most trends in vegetation indices at the canopy level could be explained by a combination of changes at the leaf level (chlorophyll, carotenoids, dry matter), changes in canopy structure (leaf area index and leaf angle distribution) and changes in cover fractions of vegetative flushes, flowers and sunburnt leaves. The transformed chlorophyll absorption ratio index over the optimised soil adjusted vegetation index (MCARI/OSAVI) was best related to leaf level trends in chlorophyll content. Seasonal changes in the photochemical reflectance index (PRI) were linked to inverse changes in the carotenoid-to-chlorophyll ratio. Canopy structure indices (the modified triangular vegetation index or MTVI2 and the standardized leaf area index determining index or sLAIDI) were sensitive to changes in leaf area index, average leaf angle as well to management interactions (pruning and harvest). Canopy water status was highly impacted during the spring flush due to expanding leaves that concealed trends in the underlying mature leaves. Seasonal trends in soil and weeds reflectance were related to changes in volumetric soil water content and to the earlier and reduced growth period of non-irrigated weeds.  相似文献   
24.
Switchgrass (Panicum virgatum L.) is a promising bioenergy crop for temperate regions. Overwintering has been used to improve biomass quality, resulting in a more efficient combustion, partially due to a reduction in minerals concentration. This study examines the effects of soil composition on overwintered switchgrass composition. Samples were collected in the spring from 58 environments in Southern Quebec to determine possible relationships between soil composition and biomass quality. Principal component analysis and stepwise regressions were used to identify relationships between soil and biomass compositions. Soil parameters monitored explained 74% of the variation in biomass silicon (Si) concentration, 45% of the variation in ash, and 32% of the variation in magnesium (Mg). Soil composition had limited effects on the concentration of other elements in switchgrass biomass. Switchgrass biomass quality is influenced by soil composition and appears well suited to biomass combustion when overwintered and harvested in the spring.  相似文献   
25.
Below‐ground niche complementarity in legume–cereal intercrops may improve resource use efficiency and root adaptability to environmental constraints. However, the effect of water limitation on legume rooting and nodulation patterns in intercropping is poorly understood. To advance our knowledge of mechanisms involved in water‐limitation response, faba bean (Vicia faba L.) and wheat (Triticum aestivum L.) were grown as mono‐ and intercrops in soil‐filled plexiglass rhizoboxes under water sufficiency (80% of water‐holding capacity) and water limitation (30% of water‐holding capacity). We examined whether intercropping facilitates below‐ground niche complementarity under water limitation via interspecific root stratification coupled with modified nodulation patterns. While no significant treatment effects were measured in intercropped wheat growth parameters, water limitation induced a decrease in shoot and root biomass of monocropped wheat. Likewise, shoot biomass and height, and root length of monocropped faba bean significantly decreased under water limitation. Conversely, water limitation stimulated root biomass of intercropped faba bean in the lower soil layer (15–30 cm soil depth). Similarly, total nodule number of faba bean roots as well as nodule number in the lower soil layer increased under intercropping regardless of water availability. Under water limitation, intercropping also led to a significant increased nodule biomass (48%) in the lower soil layer as compared to monocropping. The enhanced nodulation in the lower soil layer and the associated increase in root and shoot growth provides evidence for a shift in niche occupancy when intercropped with wheat, which improves water‐limited faba bean performance.  相似文献   
26.
27.
Application of sequential solvent extraction, followed by HPLC combined with the taste dilution analysis, enabled the localization of the most intense velvety astringent, drying, and puckering astringent, as well as bitter-tasting, compounds in red wine, respectively. Isolation of the taste components involving gel adsorption chromatography, ultrafiltration, and synthesis revealed the identification of 26 sensory-active nonvolatiles, among which several hydroxybenzoic acids, hydroxycinnamic acids, flavon-3-ol glycosides, and dihydroflavon-3-ol rhamnosides as well as a structurally undefined polymeric fraction (>5 kDa) were identified as the key astringent components. In contradiction to literature suggestions, flavan-3-ols were found to be not of major importance for astringency and bitter taste, respectively. Surprisingly, a series of hydroxybenzoic acid ethyl esters and hydroxycinnamic acid ethyl esters were identified as bitter compounds in wine. Taste qualities and taste threshold concentrations of the individual wine components were determined by means of a three-alternative forced-choice test and the half-mouth test, respectively.  相似文献   
28.
Photoperiod is commonly controlled in the commercial production of ornamental crops to induce or prevent flowering. Flower induction in short-day (SD) plants can be prevented or delayed when the natural daylength is short by providing low-intensity lighting during the dark period. A stationary high-pressure sodium (HPS) lamp with an oscillating aluminum parabolic reflector (cyclic HPS) has been developed to provide intermittent lighting to greenhouse crops. We determined the efficacy of a cyclic HPS lamp at preventing flowering in SD plants garden chrysanthemum [Chrysanthemum × grandiflorum (Ramat.) Kitam.] ‘Bianca’, pot chrysanthemum ‘Auburn’, and velvet sage (Salvia leucantha L.) relative to traditional night interruption (NI) lighting strategies. Plants were grown in a glass-glazed greenhouse at a mean daily temperature of 19.5–20.7 °C with natural SD photoperiods. NI lighting was delivered during the middle of the night (2230–0230 h) from a 600 W cyclic HPS lamp mounted at one gable end of the greenhouse or from incandescent (INC) lamps that were illuminated for the entire 4 h (CONT INC) or for 6 min every 30 min for 4 h. Plants under cyclic HPS were grown at lateral distances of 1, 4, 7, 10, or 13 m from under the lamp. Control plants were grown under an uninterrupted 15 h skotoperiod. As the distance from the cyclic HPS lamp increased from 1 to 13 m, the maximum irradiance measured during the NI decreased from 25.4 to 0.3 μmol m−2 s−1 and time to visible inflorescence (VI) and the number of nodes at VI decreased. All species had a VI within 54 d, but ≤10% of plants flowered when grown at a lateral distance of 1 or 4 m from the cyclic HPS lamp or under CONT INC. Plants grown without NI had a VI 2 to 15 d earlier and flowered 7 to 24 d earlier than plants grown at 10 or 13 m from the cyclic HPS. All garden chrysanthemums flowered under cyclic INC, whereas velvet sage and pot chrysanthemum had 15% and 35% flowering, respectively. These results indicate that a cyclic HPS lamp can be used effectively to delay flower induction and prevent flowering in these species when NI is delivered at ≥2.4 μmol m−2 s−1.  相似文献   
29.

Background  

Quantitative multi-elemental analysis by inductively coupled plasma (ICP) spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data.  相似文献   
30.
Atlantic salmon (Salmo salar L.) females (2 SW), maturing for the first time, were reared under one of three temperature regimes (high: 14.3 ± 0.5°C; natural: 10.6 ± 1.0°C; and cold: 6.9 ± 1.0°C) in combination with one of two experimental treatments; an injection of GnRH analogue (GnRHa) contained in biodegradable microspheres, or a sham injection (microspheres only). The six experimental groups were then reared under simulated natural photoperiod for 4 weeks. Blood samples were drawn for analysis of plasma steroid levels and the fish were inspected for ovulation weekly. Batches of stripped eggs were incubated in triplicate incubators in raceways until the eyed stage. Treatment with GnRHa resulted in a substantial advancement and synchronization of ovulation at all temperatures, while exposure to cold water also appeared to advance ovulation slightly. While 75% (warm and cold) to 90% (natural) of GnRHa fish ovulated during the 4-week trial, only 30% of sham-treated females exposed to cold water, and none of the sham-treated fish held at higher temperatures, ovulated during this period. Survival rates of embryos to the eyed-stage were significantly higher for broodstock exposed to cold water. Plasma levels of testosterone (T), 17β-oestradiol (E2), and 17α,20β-dihydroxy-4-pregnen-3-one (17,20βP) were all significantly affected by treatment with GnRHa and, to a lesser extent, temperature. The efficiency of GnRHa in counteracting the negative effects of high temperature on ovulation and the associated changes in circulating sex steroids suggest that temperature inhibition operates at least in part at the brain or pituitary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号