首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   524篇
  免费   50篇
林业   11篇
农学   7篇
基础科学   2篇
  103篇
综合类   68篇
农作物   29篇
水产渔业   18篇
畜牧兽医   317篇
园艺   7篇
植物保护   12篇
  2023年   6篇
  2020年   11篇
  2019年   10篇
  2017年   11篇
  2016年   6篇
  2015年   11篇
  2014年   14篇
  2013年   50篇
  2012年   24篇
  2011年   21篇
  2010年   15篇
  2009年   15篇
  2008年   19篇
  2007年   18篇
  2006年   23篇
  2005年   26篇
  2004年   15篇
  2003年   23篇
  2002年   10篇
  2001年   18篇
  2000年   11篇
  1999年   9篇
  1997年   7篇
  1994年   5篇
  1992年   5篇
  1991年   6篇
  1990年   13篇
  1989年   11篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   10篇
  1984年   4篇
  1983年   8篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1977年   5篇
  1975年   5篇
  1974年   5篇
  1973年   6篇
  1972年   4篇
  1971年   4篇
  1970年   6篇
  1968年   4篇
  1967年   5篇
  1958年   3篇
  1936年   3篇
  1897年   3篇
  1896年   3篇
排序方式: 共有574条查询结果,搜索用时 15 毫秒
91.
92.
93.

Background  

The effects of lighting on the human circadian system are well-established. The recent discovery of 'non-visual' retinal receptors has confirmed an anatomical basis for the non-image forming, biological effects of light and has stimulated interest in the use of light to enhance wellbeing in the corporate setting.  相似文献   
94.
This study investigated the effects of allergic skin disease on the penetration kinetics of hydrocortisone through canine skin in vitro. Full-thickness lesional and nonlesional (normal) skin was removed from the dorsal lumbosacral and dorsocaudal thoracic regions, respectively, of five canine cadavers. The dogs were suspected of having flea allergy dermatitis based on their distribution and types of skin lesions. Nonlesional skin was confirmed to be histologically normal, and the histopathology of the lesional skin was consistent with allergic dermatitis. Excised skin was clipped, mounted in Franz-type diffusion cells, and the transdermal penetration of a saturated, radiolabelled hydrocortisone solution was measured over 30 h. When the penetration data for all five dogs were pooled, a restricted (or residual) maximal likelihood mixed model predicted that the permeability coefficient and pseudosteady-state flux of hydrocortisone was more than twice as great (95% confidence interval 1.55-2.71 times as great; P < 0.0001) through lesional compared with nonlesional skin. There was no significant difference in the lag time for hydrocortisone penetration through lesional compared with nonlesional skin of the dogs. This study has confirmed that the transdermal penetration of hydrocortisone may be altered, typically increased twofold, but could be as high as 10-fold, through lesional compared with nonlesional skin of dogs with suspected flea allergy dermatitis. This is likely to be affected by variables such as disease severity, concurrent infections and interindividual differences in skin characteristics.  相似文献   
95.
Pearl millet [Pennisetum glaucum (L.) R. Br.] is a potentially high‐yielding grain crop for the Southern Coastal Plain region of the USA. Information on the growth and N nutrition of pearl millet is limited; therefore, this study was initiated with the objective of studying pearl millet growth, N content, N uptake patterns and N‐form preference. Plants were grown in solution culture using a modified Hoagland's solution. Solutions were changed weekly and transpirational losses replaced daily. The N‐form ratios were 1:0, 3:1, 1:1, 1:3 and 0:1 NH4 + to NO3 Uptake was determined by difference between the initial and final solutions. Nitrate and NH4 + uptake patterns were different from each other and were influenced by the ratio of NH4 + to NO3 . After the plants had been transferred to the solutions, ammonium was preferred for the first two weeks, with NO3 preferred thereafter. Nitrate uptake was highest during the grain filling period. Plant growth as measured by leaf, stem, root, and seed weight, plant height, average seed weight, and head length was generally reduced as NH4 + increased. The largest reduction was observed between the 3:1 and 1:0 ratios. Ammonium nutrition had an overall negative effect on pearl millet growth. Ammonium fertilization of pearl millet under conditions that increase absorption of NH4 + over NO3 may have a negative effect on pearl millet growth and development.  相似文献   
96.
In modern agriculture, long‐term soil fertility and crop productivity are maintained by a combination of inorganic fertilizers and pesticide inputs which, in turn, create environmental and health concerns. Therefore, studies were initiated to evaluate two commonly used herbicides (atrazine and simazine) and two biological nitrification inhibitors (nitrapyrin and terrazole) applied with NO3‐N source fertilizer for their effects on denitrification and on corn (Zea mays L.) growth and yields. Each chemical applied at the rate of 10, 50, or 100 mg a.i. L‐1 suppressed denitrification of NO3 in a liquid medium inoculated with a Tifton loamy sand in a laboratory study. Nitrapyrin and terrazole selectively suppressed NO3 or NO2 or both reduction while atrazine and simazine suppressed NO2 or N2O or both reduction. In greenhouse pot culture studies, chemical application resulted in higher percent N recovery relative to the control. When atrazine or simazine was part of the chemical treatment, concentrations of NO3 and NO2 in corn (Zea mays L.) plants increased, and plant growth was restricted due to NO2 toxicity. During two consecutive years of field studies using split‐banded applications of N fertilization with nitrapyrin and terrazole, corn ear yields increased 78% and 25% in the first and second year, respectively. With atrazine and simazine, however, yields increased significantly in the first season only. Mixing either herbicide with nitrapyrin or terrazole had no effect on yields during both seasons.

Chemical Names: atrazine = [2‐chloro‐4‐ethylamino‐6‐isopropylamino‐s‐triazine]; simazine = [2‐chloro‐4,6‐bis(ethylamino)‐s‐triazine]; nitrapyrin = [2‐chloro‐6‐(trichloromethyl)pyridine]; terrazole = [ethoxy‐3‐trichloromethyl‐1,2,4‐thiadiazole].  相似文献   
97.
Uptake of NO3 , NH4 +, P, K++, Ca++ and Mg++, as influenced by the stage of plant development and three NO3 : NH4 + ratios (1: 0, 1: 1, and 0: 1), was determined for sweet pepper (Capsicum annuum L. cv. ‘California Wonder'). Uptake was highest during fruit development and immediately after fruit harvest, indicating that fruit removal promotes nutrient uptake. When NO3 and NH4 + were supplied in equal concentrations, NO3 was absorbed more readily. Each increment in NH4 + decreased the uptake of K+, Ca++, and Mg++ by fruit tissue, while no significant effect on the N and P content of the fruit was observed. Ammonium nutrition reduced plant dry weight and fruit yield in comparison to NO3 . Results from this study suggest that NO3 is the preferred N form, and that fertilizer application should be scheduled according to specific physiological stages to maximize nutrient uptake. Nutrient content of vegetative tissue was not indicative of potential yield.  相似文献   
98.
Calcium uptake by bell pepper (Capsicum annuum L. cv. ‘California Wonder') varied by stage of plant development and N form supplied (NO3 NH4 + ratios: 1:0, 3:1, 1:1, 1:3, and 0:1) in a hydroponic study. Uptake of Ca++ was highest at bloom and during fruit expansion, making the fruit development stage the highest demand period. Calcium uptake declined with each increasing increment of NH4 + relative to NO3 supplied, although fruit yield was not significantly reduced until the ratio of NH4 + to NO3 exceeded 50%. Tissue Ca++ levels in the blossom‐end of the fruit were reduced whenever NH4 + was included with N supplied. Vegetative yield of plants followed the same trend as that observed for total fruit dry weights. Our results indicate that pepper yields are higher when NO3 is the predominant form of N. Also, these results strongly suggest that Ca++ fertilizer applications should precede the bloom period and continue during fruit development to ensure adequate Ca++ availability for fruit development.  相似文献   
99.
Abstract

The primary nitrogen forms utilized by plants are ammonium and nitrate. Although the importance of nutrients other than nitrogen for proper turfgrass growth is well established, the amounts of these nutrients in the plant tissue in relation to the use of different N‐forms has not been clearly documented. This study was conducted under greenhouse conditions to determine the effect of N‐form and cutting regime on growth, macronutrient, and micronutrient content of creeping bentgrass (Agrostis palustris Huds. ‘Penncross'). Treatments consisted of 100% NO3? (calcium nitrate), 100% NH4 + (ammonium sulfate), and a 50:50 ratio of NH4 +:NO3 ?. Half the turfgrass plants were maintained at a height of 1 cm (cut), while the other half of the plants were not cut until the end of the study (uncut). The uncut 50:50 treatment yielded the highest shoot, verdure, and total plant dry matter, while the uncut NO3 ? treatment produced the highest root dry matter. The uncut NH4 + treatment yielded the least shoot, root, and total plant dry matter. Plants of the uncut NO3 ? treatment had greater accumulation of macronutrients in the shoot and root tissue compared to plants of the NH4 + treatment. The uncut NO3 ? and 50:50 treatments had higher total accumulation of micronutrients compared to the uncut NH4 +‐treated plants. The cut NO3 ? treatment resulted in the highest macronutrient and micronutrient contents in the root tissue in comparison to other cut treatments. The cut treatments had the highest percentage accumulation of nutrients in the verdure tissue, while the uncut treatments had the highest percentage accumulation of nutrients in the shoot tissue.  相似文献   
100.
Abstract

A commercially blended 7–2–11 fertilizer containing 27 g ? kg‐1 soluble ammoniacal nitrogen (NH4‐N) was evaluated for ammonia (NH3) volatilization and injury to leatherleaf fern (Rumohra adiantiformis) and an indicator plant, tomato (Lycopersicon esculentum). Closed system laboratory incubation studies on pH‐buffered sand medium indicated a very highly significant response (p≤0.001) of NH3 volatilization to sand pH. The greatest risk from NH3 emissions at pH 8.6 and 32°C appeared to be in the 5 to 70 hour period after fertilizer application. Gypsum (CaSO4) did not affect NH3 volatilization. Ammonium nitrate (NH4NO3) was identified as the main source of NH3 volatilization from this fertilizer formulation, while on an equal mass basis, ammonium sulphate [(NH4)2SO4] was more important. Both tomato and immature leatherleaf fern fronds were highly sensitive to volatilized NH3 from the fertilizer. A critical phytotoxic NH3(aq) concentration in sand solution of 0.14 mM was estimated for immature fern fronds. Mature fern fronds were significantly more tolerant of NH3 emissions, which may explain their observed resistance to NH3 injury in the field. Assessment of selected soil and irrigation water pH's from a leatherleaf fern growing area in Florida indicated a strong likelihood that volatilized NH3 injury to foliage can occur under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号