首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   4篇
林业   13篇
  8篇
综合类   14篇
农作物   5篇
水产渔业   4篇
畜牧兽医   19篇
园艺   2篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2008年   6篇
  2007年   1篇
  2006年   5篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   3篇
  1986年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有65条查询结果,搜索用时 15 毫秒
41.
We used natural gradients in soil and vegetation δ13C signatures in a savannah ecosystem in Texas to partition soil respiration into the autotrophic (Ra) and heterotrophic (Rh) components. We measured soil respiration along short transects from under clusters of C3 trees into the C4 dominated grassland. The site chosen for the study was experiencing a prolonged drought, so an irrigation treatment was applied at two positions of each transect. Soil surface CO2 efflux was measured along transects and CO2 collected for analysis of the δ13C signature in order to: (i) determine how soil respiration rates varied along transects and were affected by localised change in soil moisture and (ii) partition the soil surface CO2 efflux into Ra and Rh, which required measurement of the δ13C signature of root- and soil-derived CO2 for use in a mass balance model.The soil at the site was unusually dry, with mean volumetric soil water content of 8.2%. Soil respiration rates were fastest in the centre of the tree cluster (1.5 ± 0.18 μmol m?2 s?1; mean ± SE) and slowest at the cluster–grassland transition (0.6 ± 0.12 μmol m?2 s?1). Irrigation produced a 7–11 fold increase in the soil respiration rate. There were no significant differences (p > 0.5) between the δ13C signature of root biomass and respired CO2, but differences (p < 0.01) were observed between the respired CO2 and soil when sampled at the edge of the clusters and in the grassland. Therefore, end member values were measured by root and soil incubations, with times kept constant at 30 min for roots and 2 h for soils. The δ13C signature of the soil surface CO2 efflux and the two end member values were used to calculate that, in the irrigated soils, Rh comprised 51 ± 13.5% of the soil surface CO2 efflux at the mid canopy position and 57 ± 7.4% at the drip line. In non-irrigated soil it was not possible to partition soil respiration, because the δ13C signature of the soil surface CO2 efflux was enriched compared to both the end member values. This was probably due to a combination of the very dry porous soils at our study site (which may have been particularly susceptible to ingress of atmospheric CO2) and the very slow respiration rates of the non-irrigated soils.  相似文献   
42.
Environmentally sound management of N in apple orchards requires that N supply meets demand. In 1997, newly planted apple trees (Malus domestica Borkh. var. Golden Delicious on M.9 rootstock) received daily applications of N for six weeks as Ca(15NO3)(2) through a drip irrigation system at a concentration of 112 mg l(-1) at 2-8, 5-11 or 8-14 weeks after planting. Irrigation water was applied either to meet estimated evaporative demand or at a fixed rate. In 1997, trees were harvested at 5, 8, 11 and 14 weeks after planting; and in 1998 at 3 weeks after full bloom. The amount of fertilizer N recovered was similar in trees in both irrigation treatments, but efficiency of fertilizer use was greater for trees receiving demand-controlled irrigation than fixed-rate irrigation. This was attributed to lower N inputs, greater retention time in the root zone and less N leaching in the demand-controlled irrigation treatments compared with fixed-rate irrigation treatments. Less fertilizer N was recovered by trees receiving an early application of N than a later application of N and this was related to the timing of N supply with respect to tree demand. Demand for root-supplied N was low until 11 weeks after planting, because early shoot and root growth was supported by N remobilized from woody tissue, which involved 55% of the total tree N content at planting. Rapid development of roots > 1 mm in diameter occurred between 11 and 14 weeks after planting, after remobilization ended, and was greater for trees receiving an early application of N than for trees receiving a later application of N. Late-season tree N demand was supplied by native soil N, and uptake and background soil solution N concentrations were higher for trees receiving demand-supplied irrigation compared with fixed-rate irrigation. Total annual N uptake by roots was unaffected by treatments and averaged 6-8 g tree(-1). Nitrogen applications in 1997 affected growth and N partitioning in 1998. Trees receiving early applications of N had more flowers, spur leaves and bourse shoots than trees receiving later applications of N. Consequently, more N was remobilized into fruits in trees receiving early applications of N compared with fruits in trees receiving later applications of N. Demand for N in the young apple trees was low. Early season demand was met by remobilization from woody tissues and the timing of demand for root-supplied N probably depends on whether flowering occurs. Method of N delivery affected the efficiency of N use. We conclude that N demand can be met at soil solution N concentrations of around 20 mg l(-1).  相似文献   
43.
Biotechnology applied for equine semen increases the levels of reactive oxygen species and reduces the natural antioxidant defence, by both dilution and removal of seminal plasma. Therefore, the aims of this study were to evaluate the effect of adding coenzyme Q10 (CoQ10) and α‐tocopherol (α‐TOH) to the cooling extender, singly or in combination, on sperm parameters, and their effectiveness in preventing lipid peroxidation (LPO) of equine semen during cooling at 5°C for 72 h. Ten adult stallions of proven fertility were used, using two ejaculates each, subjecting them to the treatments with the following concentrations: α‐TOH: 2 mm ; CoQ10: 40 μg/ml; and CoQ10 + α‐TOH: 40 μg/ml + 2 mm for control (C) without the addition of antioxidants and for vehicle control (EtOH) with 100 μl ethanol. The CoQ10 group had a higher percentage of total motility (69.1 ± 16.2%) compared to control (62.1 ± 16.2%) and EtOH (58.1 ± 18.6%). CoQ10 + α‐TOH and α‐TOH groups were most effective in preventing LPO compared to controls (1765.9 ± 695.9, 1890.8 ± 749.5, 2506.2 ± 769.4 ng malondialdehyde/108 sptz, respectively). In conclusion, CoQ10 and α‐TOH were effective during the cooling process of equine semen at 5°C for 72 h, providing increased levels of total motility, as well as lower LPO.  相似文献   
44.
Summary Soil in a potato field naturally infested with black dot (Colletotrichum coccodes) was fumigated with methyl bromide at 126 g m−2 or left unfumigated. Potato seed tubers (cv. BP1) uninfected, lightly infected (1–25% surface affected), severely infected (26–100% surface affected) and severely infected withC. coccodes but dusted with prochloraz manganese chloride as Octave 2.5% DP at 750 g per 100 kg seed were planted in fumigated and unfumigated soil. When harvested, the incidence of black dot on the progeny of infected seed planted in unfumigated soil was twice that of progeny in fumigated soil, with progeny of uninfected seed having a 68.5 times higher disease incidence in unfumigated soil. Black dot on progeny tubers was reduced by pre-treatment of seed with prochloraz in fumigated soil only. With black dot infested fields, planting disease-free seed or treating seed with fungicides would not decrease disease on progeny tubers.  相似文献   
45.
Quantifying the loss of soil carbon through respiration has proved difficult, due to the challenge of measuring the losses associated with the turnover of soil organic matter (SOM) as distinct from autotrophic components. In forest ecosystems the δ13C value of respiration from turnover of SOM (δ13CRSOM) is typically 2-4‰ enriched compared with that from roots and associated microbes (δ13CRROOTS), with that from the litter (δ13CRLITTER) lying between the two. We measured soil respiration at 50 locations in a forest soil and then used differences in isotopic signatures to quantify the proportion of soil respiration arising from the turnover of SOM (fRSOM) at a subset of 30 locations, chosen randomly. The soil surface CO2 efflux was collected using an open chamber system supplied with CO2-free air and the δ13C signature (δ13CRS) measured, giving a mean (±SD) value across the site of −26.1 ± 0.58‰. The values of δ13CRROOTS, δ13CRLITTER and δ13CRSOM were measured at each location by incubation of roots, litter and root-free soil and collection of the CO2 for isotopic analysis. δ13CRSOM became progressively depleted with length of incubation (1.5‰ after 8 h), so CO2 was collected after 20 min. The mean value of δ13CRLITTER was −27.2 ± 0.68 ‰, which was indistinguishable from δ13CRROOTS of −27.6 ± 0.51‰, while δ13CRSOM was −25.1 ± 0.88‰. δ13CRROOTS and δ13CRSOM measured at each location were used as the end points of a two component mixing model to calculate fRSOM, giving a mean value for fRSOM of 0.61 ± 0.28. It was not possible to estimate fRSOM using the total C contents of the roots and soil which were significantly depleted in 13C in comparison to their respired CO2. However, at seven locations the δ13CRS was slightly enriched compared with δ13CRSOM (mean 0.3‰), which was not considered significantly different so fRSOM was constrained to 1.0. If these seven rings were excluded mean fRSOM was 0.49 ± 0.20. We have shown the possibility of using natural abundance 13C discrimination to quantify fRSOM in a forest soil with an input of carbon only from C3 photosynthesis.  相似文献   
46.
Studies of small trees growing in pots have established that individual amino acids or amides are translocated in the xylem sap of a range of tree species following bud burst, as a consequence of nitrogen (N) remobilization from storage. This paper reports the first study of N translocation in the xylem of large, deciduous, field-grown trees during N remobilization in the spring. We applied 15N fertilizer to the soil around 10-year-old Prunus avium L. and Populus trichocharpa Torr. & Gray ex Hook var. Hastata (Dode) A. Henry x Populus balsamifera L. var. Michauxii (Dode) Farwell trees before bud burst to label N taken up by the roots. Recovery of unlabeled N in xylem sap and leaves was used to demonstrate that P. avium remobilizes N in both glutamine (Gln) and asparagine (Asn). Sap concentrations of both amides rose sharply after bud burst, peaking 14 days after bud burst for Gln, and remaining high some 45 days for Asn. There was no 15N enrichment of either amide until 21 days after bud burst. In the Populus trees, nearly all the N was translocated in the sap as Gln, the concentration of which peaked and then declined before the amide was enriched with 15N, 40 days after bud burst. Xylem sap of clonal P. avium trees was sampled at different positions in the crown to assess if the amino acid and amide composition of the sap varied within the crown. Sap was sampled during remobilization (when the concentration of Gln was maximal), at the end of remobilization and at the end of the experiment (68 days after bud burst). Although the date of sampling had a highly significant effect on sap composition, the effect of position of sampling was marginal. The results are discussed in relation to N translocation in adult trees and the possibility of measuring N remobilization by calculating the flux of N translocation in the xylem.  相似文献   
47.
48.
Several biochemical and molecular methods are used to investigate the microbial diversity and changes in microbial community structure in rhizospheres and bulk soils resulting from changes in management. We have compared the effects of plants on the microbial community, using several methods, in three different types of soils. Pots containing soil from three contrasting sites were planted with Lolium perenne (rye grass). Physiological (Biolog), biochemical (PLFA) and molecular (DGGE and TRFLP) fingerprinting methods were employed to study the change in soil microbial communities caused by the growth of rye grass. Different methods of DNA extraction and nested PCR on TRFLP profiles were examined to investigate whether they gave different views of community structure. Molecular methods were used for both fungal and bacterial diversity. Principal component analysis of Biolog data suggested a significant effect of the plants on the microbial community structure. We found significant effects of both soil type and plants on microbial communities in PLFA data. Data from TRFLP of soil bacterial communities showed large effects of soil type and smaller but significant effects of plants. Effects of plant growth on soil fungal communities were measured by TRFLP and DGGE. Multiple Procrustes analysis suggested that both methods gave similar results, with only soil types having a significant effect on fungal communities. However, TRFLP was more discriminatory as it generated more ribotype fragments for each sample than the number of bands detected by DGGE. Neither methods of DNA extraction nor the nested PCR had any effect on the evaluation of soil microbial community structure. In conclusion, the different methods of microbial fingerprinting gave qualitatively similar results when samples were processed consistently and compatible statistical methods used. However, the molecular methods were more discriminatory than the physiological and biochemical approaches. We believe results obtained from this experiment will have a major impact on soil microbial ecology in general and rhizosphere–microbial interaction studies in particular, as we showed that the different fingerprinting methods for microbial communities gave qualitatively similar results.  相似文献   
49.
We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.  相似文献   
50.
Nitrogen-fixing plant species may respond more positively to elevated atmospheric carbon dioxide concentrations ([CO2]) than other species because of their ability to maintain a high internal nutrient supply. A key factor in the growth response of trees to elevated [CO2] is the availability of nitrogen, although how elevated [CO2] influences the rate of N2-fixation of nodulated trees growing under field conditions is unclear. To elucidate this relationship, we measured total biomass, relative growth rate, net assimilation rate (NAR), leaf area and net photosynthetic rate of N2-fixing Alnus glutinosa (L.) Gaertn. (common alder) trees grown for 3 years in open-top chambers in the presence of either ambient or elevated atmospheric [CO2] and two soil N regimes: full nutrient solution or no fertilizer. Nitrogen fixation by Frankia spp. in the root nodules of unfertilized trees was assessed by the acetylene reduction method. We hypothesized that unfertilized trees would show similar positive growth and physiological responses to elevated [CO2] as the fertilized trees. Growth in elevated [CO2] stimulated (relative) net photosynthesis and (absolute) total biomass accumulation. Relative total biomass increased, and leaf nitrogen remained stable, only during the first year of the experiment. Toward the end of the experiment, signs of photosynthetic acclimation occurred, i.e., down-regulation of the photosynthetic apparatus. Relative growth rate was not significantly affected by elevated [CO2] because although NAR was increased, the effect on relative growth rate was negated by a reduction in leaf area ratio. Neither leaf area nor leaf P concentration was affected by growth in elevated [CO2]. Nodule mass increased on roots of unfertilized trees exposed to elevated [CO2] compared with fertilized trees exposed to ambient [CO2]. There was also a biologically significant, although not statistically significant, stimulation of nitrogenase activity in nodules exposed to elevated [CO2]. Root nodules of trees exposed to elevated [CO2] were smaller and more evenly spaced than root nodules of trees exposed to ambient [CO2]. The lack of an interaction between nutrient and [CO2] effects on growth, biomass and photosynthesis indicates that the unfertilized trees maintained similar CO2-induced growth and photosynthetic enhancements as the fertilized trees. This implies that alder trees growing in natural conditions, which are often limited by soil N availability, should nevertheless benefit from increasing atmospheric [CO2].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号