首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   1篇
  22篇
综合类   1篇
水产渔业   5篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
21.
22.
Dissolved organic matter (DOM) in soils is partially adsorbed when passing through a soil profile. In most adsorption studies, water soluble organic matter extracted by water or dilute salt solutions is used instead of real DOM gained in situ by lysimeters or ceramic suction cups. We investigated the adsorption of DOM gained in situ from three compartments (forest floor leachate and soil solution from 20 cm (Bg horizon) and 60 cm depth (2Bg horizon)) on the corresponding clay and fine silt fractions (< 6.3 μm, separated together from the bulk soil) of the horizons Ah, Bg, and 2Bg of a forested Stagnic Gleysol by batch experiments. An aliquot of each clay and fine silt fraction was treated with H2O2 to destroy soil organic matter. Before and after the experiments, the solutions were characterized by ultra‐violet and fluorescence spectroscopy and analyzed for sulfate, chloride, nitrate, and fluoride. The highest affinity for DOM was found for the Ah samples, and the affinity decreased in the sequence Ah > Bg > 2Bg. Dissolved organic matter in the 2Bg horizon can be regarded as slightly reactive, because adsorption was low. Desorption of DOM from the subsoil samples was reflected more realistically with a non‐linear regression approach than with initial mass isotherms. The results show that the extent of DOM adsorption especially in subsoils is controlled by the composition and by the origin of the DOM used as adsorptive rather than by the mineralogical composition of the soil or by contents of soil organic matter. We recommend to use DOM gained in situ when investigating the fate of DOM in subsoils.  相似文献   
23.
The sorption of the iron‐cyanide complexes ferricyanide, [Fe(CN)6]3—, and ferrocyanide, [Fe(CN)6]4—, on ferrihydrite was investigated in batch experiments including the effects of pH (pH 3.5 to 8) and ionic strength (0.001 to 0.1 M). The pH‐dependent sorption data were evaluated with a model approach by Barrow (1999): c = a exp(bS)S/(Smax‐S), where c is the solution concentration; S is the sorbed amount; Smax is maximum sorption; b is a parameter; and a is a parameter at constant pH. Ferricyanide sorption was negatively affected by increasing ionic strength, ferrocyanide sorption not at all. More ferricyanide than ferrocyanide was sorbed in the acidic range. In the neutral range the opposite was true. Fitting the pH‐dependent sorption to the model resulted in a strong correlation for both iron‐cyanide complexes with a common sorption maximum of 1.6 μmol m—2. Only little negative charge was conveyed to the ferrihydrite surface by sorption of iron‐cyanide complexes. The sorption of iron‐cyanide complexes on ferrihydrite is weaker than that on goethite, as a comparison of the model calculations shows. This may be caused by the lower relative amount of high‐affinity sites present on the ferrihydrite surface.  相似文献   
24.
Geogenic CO2 emission on mofette sites may be a factor in soil formation. To demonstrate a CO2 effect, we studied soils (0–60 cm depth) along a transect across a mofette in the NW Czech Republic. We determined CO2 partial pressures (p(CO2)), and the contents in the soil of carbon (C), nitrogen (N), sulphur and dithionite‐ and oxalate‐extractable iron and manganese. X‐ray diffractometry (XRD) and Fourier‐transform infrared (FTIR) spectroscopy methods were applied to the soils' particle‐size fractions. The CO2 partial pressures varied considerably (0.001–1) along the transect and were positively correlated with both the Corg contents (5.5–432.9 g kg−1) and the C:N ratio (9.3–32.2), indicating a decreased turnover of organic parent material with increasing CO2. When the soil atmosphere was entirely composed of CO2, pedogenic Fe oxide contents were small (minimum 0.5 g dithionite‐extractable Fe kg−1) and poorly crystalline. XRD and FTIR spectroscopy revealed primary and secondary minerals such as quartz, feldspars, mica, illite, kaolinite and halloysite irrespective of CO2 contents. A pronounced effect of CO2 was found for soil organic matter (SOM), because the FTIR spectra did not reveal a normal accumulation of alkyl C and lipids of microbial origin in the clay fraction. This indicates that microbial synthesis and/or degradation of plant‐derived aliphatic species were reduced. We did not detect more organo–mineral associations, microbially formed polypeptides or pectin in clay fractions in comparison with the clay‐plus‐silt fractions at large p(CO2). This indicates relatively unaltered particulate OM in the clay fraction. At large p(CO2) values, the IR bands indicative of lignin became detectable and that of aryl ketones in lignin was positively correlated with p(CO2). Thus, we suggest that microbial formation of SOM and degradation of lignin is restricted under an increased CO2 atmosphere. We attribute less humification at increased CO2 in the soil atmosphere to a decrease in oxidative transformations and decreased microbial activity.  相似文献   
25.
The iron‐cyanide complexes ferricyanide, [FeIII(CN)6]3?, and ferrocyanide, [FeII(CN)6]4?, are anthropogenic contaminants in soil. We studied the interactions of ferricyanide with humic soils and charred straw (maize and rye, both charred at 300, 400 and 500°C) by batch experiments and Fourier transform infrared (FTIR) spectroscopy. All soil samples sorbed ferricyanide (up to 8.4 g kg?1). Precipitation of a manganese ferrocyanide after reduction of ferricyanide in the moderately acidic to neutral soils was deduced from both FTIR spectroscopy (CN absorption bands at 2069–2065 cm?1) and geochemical modelling. Ferricyanide was also adsorbed onto the charred straw. The amounts of iron‐cyanide complexes adsorbed increased with increasing charring temperature, with a maximum of 1.71 g kg?1. An absorption band at 2083 cm?1 indicated weakly adsorbed intermediates of the reduction of ferricyanide to ferrocyanide. This band disappeared in the samples charred at higher temperature, whereas a band at 2026 cm?1 was present in all spectra and became intensified in the high‐temperature straw. We attribute this band to ferrocyanide forming inner‐sphere complexes, presumably with quinone species of the organic matter. The band at 2026 cm?1 was also present in the spectra of the soils, indicating that soil organic matter also adsorbs ferrocyanide. However, in humic soils the main processes of ferricyanide interaction include reduction to ferrocyanide and precipitation as manganese ferrocyanide. Quantitatively, adsorption on highly aromatic substances plays only a less important role as compared with precipitation.  相似文献   
26.
To assess the effect of dietary composition on growth performance and body composition of pike perch (Sander lucioperca), fingerlings with an initial body weight of 1.36 g (just trained to accept formulated feed) were fed three experimental diets in triplicate for 90 days. Two feeding groups were fed with formulated diets (CD, CD+7) containing varying levels of crude lipid (CL) of 14.65% and 21.94% dry matter (d.m.) with crude protein (CP) levels of 59.73% and 56.56%, and one feeding group was fed a natural diet (chironomids, CP = 65.93% d.m.; CL = 7.20% d.m.). Furthermore, pike perch of the same age caught in different natural habitats were analysed to determine their naturally fluctuations in body composition. Specific growth rate (SGR; CD = 3.36, CD+7 = 3.47) and feed conversion ratio (FCR; CD = 1.02, CD+7 = 0.93) of fish fed formulated diets did not differ significantly with rising dietary lipid content, due to high variability within the individuals of each feeding groups. In contrast, pike perch fed with chironomids showed a significantly lower SGR of 2.49 and higher FCR of 2.37 (on a dry matter basis). Body composition of pike perch fed formulated diets was affected by dietary composition and showed increased lipid contents [CD=6.25% original matter (o.m.), CD+7 = 9.00% o.m.] with rising dietary lipid levels. Pike perch of CD and CD+7 feeding groups showed significant increased hepatosomatic indices (HSIs) of 1.99 and 2.05 in contrast to fish fed chironomids with HSI of 1.11. Fish caught in the different natural habitats were characterised by low body lipid and dry matter contents of 0.64–1.88% o.m. and 21.08–23.75% o.m. Higher lipid incorporation of fish fed with formulated diets accompanied with poor benefit on growth performance at higher dietary lipid content indicated that pike perch ability to utilise lipids is low when dietary crude protein content is higher than 56.56%.  相似文献   
27.

Purpose  

Biogeochemical interfaces, the 3D association of minerals, soil organic matter, and biota, are hotspots of soil processes because they exhibit strong biological, physical, and chemical gradients. Biogeochemical interfaces have thicknesses from nanometers to micrometers and separate bulk immobile phases from mobile liquid or gaseous phases. The aim of this contribution is to review advanced microscopic and spectroscopic characterization techniques that allow for spatially resolved analysis of composition and properties of biogeochemical interfaces or their visualization.  相似文献   
28.
Primary minerals of the parent material undergo weathering during the formation of terrestrial soils to varying extent. As a result, secondary minerals develop, which comprise, among many others, hydroxy‐interlayered minerals (HIMs). These minerals have formed by interlayering of hydroxy‐metal complexes (especially of Al3+, also Mg2+, Fe2+/3+) into micas, expansible 2:1 phyllosilicates and forming oligomers, or by weathering of primary chlorite. The degree of interlayer filling and the stability of these fillings affect several physico‐chemical soil properties, for instance the cation exchange capacity. Although many studies have been conducted on formation, occurrence, and properties of HIMs in soil during the last decades, several challenges still exist. These challenges include analytical identification and quantification of HIMs in soil, the nature of the interlayer filling and the identification of favorable conditions in soil for the formation of HIMs. In order to deepen the understanding of formation, properties, and fate of HIMs in soil, we critically reviewed the available literature. Based on the review, we recommend using a new structural model that enables quantification of hydroxy‐interlayered smectite in soil by X‐ray diffractometry, laboratory experiments on the formation and preservation of different types of interlayers and considering the temporal and spatial dimension of the formation of HIMs in soil in more detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号