首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1168篇
  免费   49篇
  国内免费   9篇
林业   96篇
农学   35篇
基础科学   11篇
  221篇
综合类   180篇
农作物   43篇
水产渔业   69篇
畜牧兽医   415篇
园艺   23篇
植物保护   133篇
  2023年   6篇
  2022年   9篇
  2021年   16篇
  2020年   15篇
  2019年   23篇
  2018年   22篇
  2017年   13篇
  2016年   21篇
  2015年   20篇
  2014年   24篇
  2013年   56篇
  2012年   65篇
  2011年   83篇
  2010年   38篇
  2009年   40篇
  2008年   90篇
  2007年   75篇
  2006年   74篇
  2005年   77篇
  2004年   61篇
  2003年   73篇
  2002年   49篇
  2001年   20篇
  2000年   16篇
  1999年   13篇
  1998年   15篇
  1997年   18篇
  1996年   7篇
  1995年   9篇
  1994年   15篇
  1993年   14篇
  1992年   6篇
  1991年   8篇
  1990年   8篇
  1989年   11篇
  1988年   8篇
  1987年   4篇
  1986年   9篇
  1985年   11篇
  1984年   10篇
  1983年   10篇
  1982年   3篇
  1981年   5篇
  1980年   9篇
  1979年   6篇
  1978年   9篇
  1977年   9篇
  1976年   4篇
  1975年   5篇
  1973年   3篇
排序方式: 共有1226条查询结果,搜索用时 15 毫秒
31.
32.
33.
Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable response are unresolved. We grew 12-year-old sweetgum trees (Liquidambar styraciflua L.) in a Free-Air CO2 Enrichment (FACE) facility in ambient [CO2] (37/44 Pa daytime/nighttime) and elevated [CO2] (57/65 Pa daytime/nighttime) in native soil at Oak Ridge National Environmental Research Park. Nighttime respiration (R(N)) was measured on leaves in the upper and lower canopy in the second (1999) and third (2000) growing seasons of CO2 fumigation. Leaf respiration in the light (R(L)) was estimated by the technique of Brooks and Farquhar (1985) in the upper canopy during the third growing season. There were no significant short-term effects of elevated [CO2] on R(N) or long-term effects on R(N) or R(L), when expressed on an area, mass or nitrogen (N) basis. Upper-canopy leaves had 54% higher R(N) (area basis) than lower-canopy leaves, but this relationship was unaffected by CO2 growth treatment. In August 2000, R(L) was about 40% of R(N) in the upper canopy. Elevated [CO(2)] significantly increased the number of leaf mitochondria (62%), leaf mass per unit area (LMA; 9%), and leaf starch (31%) compared with leaves in ambient [CO(2)]. Upper-canopy leaves had a significantly higher number of mitochondria (73%), N (53%), LMA (38%), sugar (117%) and starch (23%) than lower-canopy leaves. Growth in elevated [CO2] did not affect the relationships (i.e., intercept and slope) between R(N) and the measured leaf characteristics. Although no factor explained more than 45% of the variation in R(N), leaf N and LMA were the best predictors for R(N). Therefore, the response of RN to CO2 treatment and canopy position was largely dependent on the magnitude of the effect of elevated [CO2] or canopy position on these characteristics. Because elevated [CO2] had little or no effect on N or LMA, there was no effect on R(N). Canopy position had large effects on these leaf characteristics, however, such that upper-canopy leaves exhibited higher R(N) than lower-canopy leaves. We conclude that elevated [CO2] does not directly impact leaf respiration in sweetgum and that barring changes in leaf nitrogen or leaf chemical composition, long-term effects of elevated [CO2] on respiration in this species will be minimal.  相似文献   
34.
Evaluation of existing on-farm agroforestry plots should provide useful supplementary information for the design of improved agroforestry systems, in both research and development projects. Such evaluation has been little used, however, largely due to the methodological difficulties of surveying highly variable on-farm plots, and difficulties in identifying key variables for measurement. This paper describes a set of methods and tools used in evaluating plots of alley-cropping and tree borders around crop fields established by farmers working with the CARE Agroforestry Extension Project in western Kenya. Details of survey design, sampling, and implementation are discussed, and suggestions made for carrying out agroforestry surveys in other projects. A condensed version of the questionnaire is appended.  相似文献   
35.
The water state of one tropical (Robinia coccinea) and two temperate (Acer saccharum and Fagus grandifolia) hardwoods was determined at different equilibrium moisture contents (EMC) during desorption at 25°C. NMR technique was used to separate different components of water in wood. The species studied presented different structures, which were apparent on the spin–spin relaxation T2 values. Three different water components were separated: slow T2 (liquid water in vessel elements), medium T2 (liquid water in fiber and parenchyma elements) and fast T2 (bound or cell wall water). The NMR results showed that even at equilibrated conditions a region exists where loss of liquid water and bound water takes place simultaneously. This region will vary according to the wood structure. Finally, liquid water was present at EMC lower than the fiber saturation point, which contradicts the concept of this point when considered as a bulk property of wood.  相似文献   
36.
Sanding is a common practice required in order to prepare wood surfaces for coating. Little literature is available regarding the effect of sanding parameters on the quality of surfaces. Sugar maple wood surfaces were evaluated in samples that had been sanded using two types of abrasive minerals, three grit sizes and four feed speeds. Roughness, wetting properties and cell damage were used to assess surface quality. Both abrasives decreased roughness and cell damage from 100- to 120-grit sanding stage. Addition of a 150-grit stage did not further reduce the roughness, whereas the cell damage continued to decrease. Increasing feed speed led to rougher surfaces due to higher fibrillation. Surfaces produced by silicon carbide were smoother and less damaged than those obtained with aluminum oxide. However, the surfaces sanded with aluminum oxide were more wettable and showed no significant difference in wetting time as a function of grit size. For these surfaces, the wetting time was reduced as feed speed increased.An erratum to this article is available at .An erratum to this article can be found at  相似文献   
37.
Within-leaf variations in cell size, mitochondrial numbers and dark respiration rates were compared in the most recently expanded tip, the mid-section and base of needles of Pinus radiata D. Don trees grown for 4 years in open-top chambers at ambient (36 Pa) or elevated (65 Pa) carbon dioxide partial pressure (p(CO2)a). Mitochondrial numbers and respiratory activity varied along the length of the needle, with the highest number of mitochondria per unit cytoplasm and the highest rate of respiration per unit leaf area at the base of the needle. Regardless of the location of the cells (tip, middle or basal sections), needles collected from trees grown in elevated p(CO2)a had nearly twice the number of mitochondria per unit cytoplasm as those grown in ambient p(CO2)a. This stimulation of mitochondrial density by growth at elevated p(CO2)a was greater at the tip of the needle (2.7 times more mitochondria than in needles grown in ambient CO2) than at the base of the needle (1.7 times). The mean size of individual mitochondria was unaffected either by growth at elevated p(CO2)a or by position along the needle. Tree growth at elevated p(CO2)a had a variable effect on respiration per unit leaf area, significantly increasing respiration in the tip of the needles (+25%) and decreasing respiration at the mid-section and base of the needles (-14% and -25%, respectively). Although a simple relationship between respiration per unit leaf area and mitochondrial number per unit cytoplasm was found within each CO2 treatment, the variable effect of growth at elevated p(CO2)a on respiration along the length of the needles indicates that a more complex relationship must determine the association between structure and function in these needles.  相似文献   
38.
We measured the seasonal and temperature responses of leaf photosynthesis and respiration of two co-occurring native New Zealand tree species with contrasting leaf phenology: winter-deciduous fuchsia (Fuchsia excorticata J. R. Forst & G. Forst) and annual evergreen wineberry (Aristotelia serrata J. R. Forst & G. Forst). There was no difference in the amount of nitrogen per unit leaf area (Narea, range 40-160 mmol m-2, P = 0.18) or specific leaf area (S, range 8-27 m2 kg-1, P = 0.87) in summer leaves of wineberry or fuchsia. The amount of nitrogen per unit leaf area and S varied significantly with height of leaves in the canopy for both species (r2 range 0.61-0.87). Parameters describing the maximum rates of rubisco carboxylation (Vcmax) and electron transport (Jmax) were related significantly to Narea, and were 60% higher on average in spring and summer leaves than in autumn and winter leaves for both species. The seasonal effect remained significant (P < 0.001) when Narea was included in a regression model, indicating that seasonal changes were not only due to changes in Narea. Values for Vcmax and Jmax were 30% lower in wineberry leaves than in fuchsia leaves on average, although the difference ranged from 15% in summer leaves to 39% in autumn leaves. Activation energies describing the temperature dependence of Vcmax and Jmax in wineberry were 111 and 114% of corresponding values for fuchsia (Ea (Vcmax) = 39.1 kJ mol-1, Ea (Jmax) = 32.9 kJ mol-1). Respiration at night was the same (P = 0.34) at 10 degrees C for both species (R10 = 0.7 micromol m-2 s-1), although activation energies (E0) were higher in wineberry than in fuchsia (47.4 and 32.9 kJ mol-1 K-1, respectively). These results show that rates of photosynthesis are higher in winter-deciduous fuchsia than in annual evergreen wineberry.  相似文献   
39.
Sasse  Jo  Sands  Roger 《New Forests》1997,14(2):85-105
Stem cuttings of Eucalyptus globulus are used within tree improvement programs and for mass deployment. To be successful, cuttings must perform as well or better than seedlings. The root systems of cuttings are fundamentally different from those of seedlings. If these differences influence growth, the differences and their consequences must be identified and the propagation system manipulated to improve performance of the propagules.Cuttings are only a viable alternative to seedlings as planting stock if the method of propagation does not affect their growth and development adversely. Full-sibling cuttings and seedlings of Eucalyptus globulus were compared under controlled environmental conditions to minimise extraneous sources of variation, and to establish whether changes in growth or development were induced by propagation. On three occasions over a period of eight weeks root-collar diameter, shoot height, leaf and stem weight, shoot/root ratios and root system morphology were measured on cuttings and seedlings. Seedlings were taller than cuttings throughout the experiment, but both plant types had similar height growth rates. Diameter growth rates were lower in cuttings than seedlings, and there were differences in both height and diameter growth rates between families. Root system configuration differed between the plant types. Seedlings had strongly gravitropic tap-roots, with two types of primary roots from which secondary roots emerged. Cuttings had no tap roots, and the main structural components of their root systems were adventitious roots formed during propagation. Cuttings did not develop further structural roots during the experiment, whereas seedlings continued to develop primary roots. Individual primary roots of cuttings were longer and had larger mid-point diameters than those of seedlings, but the total length of primary roots was greater in seedlings. Seedlings also had a greater number and total length of secondary roots. Shoot/root ratios, calculated from a range of functional measures, were higher in cuttings than seedlings.  相似文献   
40.
The long-term nature of forest crop rotations makes it difficult to determine impacts of forestry on soil nutrients that might be depleted by forest growth. We used small scale, highly stocked plots to compress the length of the rotation and rapidly induce nutrient depletion. In the study, two species (Pinus radiata D. Don and Cupressus lusitanica Miller) are compared under two disturbance regimes (soil undisturbed and compacted), and two fertiliser treatments (nil and plus fertiliser), applied in factorial combination at 33 sites, covering the range of climatic and edaphic variation found in plantation forests across New Zealand. To assess our ability to rapidly highlight important soil properties, foliar nutrient concentrations were determined 20 months after planting. It was hypothesised that the densely planted plots, even at a young age, would create sufficient pressure on nutrient resources to allow development of relationships between properties used as indicies of soil nutrient availability and foliar nutrient concentrations. For both species significant relationships between foliar nutrients and 0–10 cm layer soil properties from unfertilised plots were evident for N (total and mineralisable N) and P (total, acid extractable, organic, Bray-2 and Olsen P). With the exception of Ca in C. lusitanica, foliar K, Ca and Mg were correlated with their respective soil exchangeable cation measures. The results thus confirm the utility of the experimental approach and the relevance of the measured soil properties for forest productivity.

In unfertilised plots foliar N and P concentrations in P. radiata exceeded those in C. lusitanica, the differences being eliminated by fertiliser application. Foliar N/P ratios in P. radiata also exceeded those in C. lusitanica. In contrast to N and P, foliar K, Ca and Mg concentrations were all higher in C. lusitanica, the difference being particularly marked for Ca and Mg. P. radiata contained substantially higher concentrations of the metals Zn, Mn and Al than C. lusitanica, whereas the latter contained higher B concentrations. Possible reasons for differences between species in foliar nutrient concentrations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号