首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   4篇
林业   3篇
农学   2篇
  15篇
综合类   3篇
农作物   6篇
水产渔业   14篇
畜牧兽医   36篇
植物保护   34篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   4篇
  2018年   2篇
  2016年   3篇
  2015年   3篇
  2014年   8篇
  2013年   8篇
  2012年   4篇
  2011年   5篇
  2010年   1篇
  2009年   6篇
  2008年   13篇
  2007年   9篇
  2006年   7篇
  2005年   12篇
  2004年   5篇
  2003年   4篇
  2002年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1992年   2篇
  1983年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
111.
Paddy and Water Environment - This study focuses on a method for improving water quality via anoxification recovery using underwater LED treatment in an organically polluted reservoir. The main aim...  相似文献   
112.
It has recently been proposed that water purification could be performed using aquatic plants, since they absorb nutrient salts. The behavior of a substance in a closed water area is affected by turbulent flows from wind-induced flow, which is a mechanical disturbance, and convective flow, which is a thermal disturbance. In a closed density stratified water area, wind-induced flow gives rise to the entrainment phenomenon at the density interface. This phenomenon, which is based on mixing between the upper and lower water layers, lowers the density interface and so affects the water quality. We experimentally investigated the effect of aquatic plants on the turbulent flow from a mechanical disturbance in the closed water area. Results indicated that the presence of floating and submerged plants had a significant effect on the scale of the turbulent entrainment, and that the entrainment velocity depended on the overall Richardson number to the power of –3/2.  相似文献   
113.
Lime-N (calcium cyanamide, CaCN2) acts as both fertilizer and pesticide. Lime-N may reduce nitrous oxide (N2O) emission from soil, although its effectiveness and the relative mechanisms are not well understood. The aim of the study was to quantify the effect of lime-N on N2O emission from the acidic soil of tea fields. The study design consisted of two treatments: conventional fertilizer (CF) (application of conventional organo-chemical fertilizer) and lime-N (LN) (application of approximately 53 % of the applied N as lime-N and the remaining as conventional organo-chemical fertilizer). Both treatments had the same amount of N, P2O5, and K2O applied to soil between plant canopies; fertilizer was incorporated into soil. We measured N2O emissions and environmental and microbial parameters of soil between plant canopies and under the canopy of tea plants, including the concentrations of dicyandiamide and cyanamide derived from lime-N. Nitrous oxide emission from soil between plant canopies was lower in the LN treatment than in the CF treatment, and soil ammonium oxidation activity and soil denitrification rate decreased after lime-N application. We applied the acetylene inhibition technique and analyzed isotopomer ratios of N2O; the results of both techniques suggested that denitrification was the major process of N2O production in the soil between plant canopies, despite relatively low water-filled pore space. Cumulative N2O emission over the 366 days of the experiment was 36.0 % lower in the LN treatment than in the CF treatment (P?<?0.05). Our results suggest that lime-N application decreases N2O emission by inhibiting both nitrification and denitrification processes in the acidic soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号