首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81152篇
  免费   4515篇
  国内免费   44篇
林业   3179篇
农学   2477篇
基础科学   437篇
  9804篇
综合类   13205篇
农作物   2854篇
水产渔业   3923篇
畜牧兽医   43822篇
园艺   937篇
植物保护   5073篇
  2018年   1249篇
  2017年   1328篇
  2016年   1210篇
  2015年   1045篇
  2014年   1228篇
  2013年   3362篇
  2012年   2303篇
  2011年   2801篇
  2010年   1849篇
  2009年   1811篇
  2008年   2696篇
  2007年   2622篇
  2006年   2399篇
  2005年   2174篇
  2004年   2053篇
  2003年   2140篇
  2002年   1982篇
  2001年   2478篇
  2000年   2440篇
  1999年   1993篇
  1998年   851篇
  1997年   850篇
  1995年   866篇
  1994年   792篇
  1993年   772篇
  1992年   1569篇
  1991年   1813篇
  1990年   1625篇
  1989年   1607篇
  1988年   1475篇
  1987年   1472篇
  1986年   1482篇
  1985年   1500篇
  1984年   1241篇
  1983年   1133篇
  1982年   784篇
  1979年   1230篇
  1978年   951篇
  1977年   943篇
  1976年   962篇
  1975年   992篇
  1974年   1141篇
  1973年   1115篇
  1972年   1059篇
  1971年   945篇
  1970年   960篇
  1969年   977篇
  1968年   887篇
  1967年   939篇
  1966年   814篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
We estimated the proportions of anadromous and freshwater‐resident brown trout (Salmo trutta) in different parts of the subarctic River Näätämöjoki/Neidenelva system (Finland and Norway) using carbon, nitrogen and hydrogen stable isotope analyses of archived scales as identifiers of migration strategy. Our results showed that carbon stable isotope values were the best predictor of migration strategy. Most individuals fell into two clearly distinct groups representing anadromous (47%) or freshwater‐resident (42%) individuals, but some fish had intermediate carbon values suggesting repeated movement between freshwater and the sea. The proportion of anadromous individuals decreased steadily with distance from the sea forming a spatial continuum in migration strategies which is probably maintained by the combination of several factors such as divergent availability of food resources, variable migration costs and genetic differences. These within‐catchment differences in migration strategies should be taken into account in fisheries management practices.  相似文献   
992.
993.
Soil structure forms a key component of soil quality, and its assessment by semi‐quantitative visual soil evaluation (VSE) techniques can help scientists, advisors and farmers make decisions regarding sampling and soil management. VSE techniques require inexpensive equipment and generate immediate results that correlate well with quantitative measurements of physical and biochemical properties, highlighting their potential utility. We reviewed published VSE techniques and found that soils of certain textures present problems and a lack of research into the influence of soil moisture content on VSE criteria. Generally, profile methods evaluate process interactions at specific locations within a field, exploring both intrinsic aspects and anthropogenic impacts. Spade methods focus on anthropogenic characteristics, providing rapid synopses of soil structure over wider areas. Despite a focus on structural form, some methods include criteria related to stability and resiliency. Further work is needed to improve existing methods regarding texture influences, on‐farm sampling procedures and more holistic assessments of soil structure.  相似文献   
994.
Soil bulk density (BD) and effective cation exchange capacity (ECEC) are among the most important soil properties required for crop growth and environmental management. This study aimed to explore the combination of soil and environmental data in developing pedotransfer functions (PTFs) for BD and ECEC. Multiple linear regression (MLR) and random forest model (RFM) were employed in developing PTFs using three different data sets: soil data (PTF‐1), environmental data (PTF‐2) and the combination of soil and environmental data (PTF‐3). In developing the PTFs, three depth increments were also considered: all depth, topsoil (<0.40 m) and subsoil (>0.40 m). Results showed that PTF‐3 (R2; 0.29–0.69) outperformed both PTF‐1 (R2; 0.11–0.18) and PTF‐2 (R2; 0.22–0.59) in BD estimation. However, for ECEC estimation, PTF‐3 (R2; 0.61–0.86) performed comparably as PTF‐1 (R2; 0.58–0.76) with both PTFs out‐performing PTF‐2 (R2; 0.30–0.71). Also, grouping of data into different soil depth increments improves the estimation of BD with PTFs (especially PTF‐2 and PTF‐3) performing better at subsoils than topsoils. Generally, the most important predictors of BD are sand, silt, elevation, rainfall, temperature for estimation at topsoil while EVI, elevation, temperature and clay are the most important BD predictors in the subsoil. Also, clay, sand, pH, rainfall and SOC are the most important predictors of ECEC in the topsoil while pH, sand, clay, temperature and rainfall are the most important predictors of ECEC in the subsoil. Findings are important for overcoming the challenges of building national soil databases for large‐scale modelling in most data‐sparse countries, especially in the sub‐Saharan Africa (SSA).  相似文献   
995.
We previously reported an alfalfa half‐sib family, HS‐B, with improved salt tolerance, compared to parental plants, P‐B. In this study, we conducted additional experiments to address potential physiological mechanisms that may contribute to salt tolerance in HS‐B. Vegetatively propagated HS‐B and P‐B plants were treated with a nutrient solution (control) or a nutrient solution containing NaCl (EC = 12 dS/m). Shoots and roots were harvested at various time points after treatment for quantification of proline, soluble sugar, and H2O2 using spectrophotometers. Subcellular localization and quantification of Na in roots were conducted using a Na+‐specific dye under a confocal microscope. HS‐B produced 86 and 89% greater shoot and root dry biomass, respectively, compared to parental plants, P‐B, under salinity in the greenhouse. Under saline conditions the HS‐B shoots accumulated 115% and roots 55% more soluble sugars than P‐B counterparts. The non‐saline HS‐B shoots, however, showed 72% less soluble sugars than the non‐saline P‐B plants. Under saline conditions HS‐B accumulated 39% less proline in shoots, while roots accumulated 56% more proline, compared to their P‐B parents. HS‐B plants also showed a greater reduction of stomatal conductance under mild saline stress. HS‐B shoots and roots contained 3–4 times less reactive oxygen species (H2O2) after salt treatment compared to P‐B plants. Sodium localization and distribution analysis using Na+‐specific dye revealed HS‐B plants accumulated 88% and 48% less Na+ in stele and xylem vessels compared to P‐B. The study provides insights into the potential mechanisms that may contribute to salt tolerance in HS‐B: maintaining RWC by accumulating soluble sugars while reducing transpiration, maintaining healthy status by reducing oxidative stresses, and preventing salt toxicity by reducing accumulation of Na+ inside root cells and xylem.  相似文献   
996.
997.
Soil organic carbon (SOC) content and its spatial distribution in the Northern Gangetic Plain (NGP) Zone of India were determined to establish the cause–effect relationship between agro‐ecological characteristics, prevailing crop management practices and SOC stock. Area Spread Index (ASI) approach was used to collect soil samples from the NGP areas supporting predominant cropping systems. Exponential ordinary kriging was found most suitable geo‐statistical model for developing SOC surface maps of the NGP. Predicted surface maps indicated that 43.7% area of NGP had 0.5–0.6% SOC, while the rest of the area was equally distributed with high (0.61–0.75%) and low (< 0.5%) SOC content levels. Averaged across cropping systems, maximum SOC content was recorded in Bhabar and Tarai Zone (BTZ), followed by Central Plain Zone (CPZ), Mid‐Western Plain Zone (MWPZ), Western Plain Zone (WPZ) and South‐Western Plain Zone (SWPZ) of the NGP. The SOC stock was above the optimum threshold (> 12.5 Mg/ha) in 97.8, 57.6 and 46.4% areas of BTZ, CPZ and MWPZ, respectively. Only 9.8 and 0.4% area of WPZ and SWPZ, respectively, had SOC stock above the threshold value. The variation in SOC stock was attributed largely to carbon addition through recycling of organic sources, cropping systems, tillage intensity, crop or residue cover and land‐use efficiency, nutrient‐use pattern, soil texture and prevailing ecosystem. Adoption of conservation agriculture, balanced use of nutrients, inclusion of legumes in cropping systems and agro‐forestry were suggested for enhancing SOC stock in the region.  相似文献   
998.
The physiological response of multiple rice cultivars, eighteen initially and eight cultivars later on, to suboptimal temperatures (ST) conditions was investigated in laboratory and outdoor experimental conditions. Treatment with ST decreased growth in different extents according to the cultivar and affected the PSII performance, determined by chlorophyll fluorescence fast‐transient test, and stomatal conductance, regardless the experimental condition. Two groups of cultivars could be distinguished on the base of their growth and physiological parameters. The group of cultivars presenting higher growths displayed optimal JIP values, and higher instantaneous water use efficiency (WUEi), due to a lower Gs under ST, unlike cultivars showing lower growth values, which presented worse JIP values and could not adjust their Gs and hence their WUEi. In this work, we detected at least two cultivars with superior tolerance to ST than the cold tolerant referent Koshihikari. These cultivars could be used as parents or tolerance donors in breeding for new crop varieties. On other hand, positive and significant correlations between data obtained from laboratory and outdoor experiments suggest that laboratory measurements of most of the above mentioned parameters would be useful to predict the response of rice cultivars to ST outdoor.  相似文献   
999.
New strategies to enhance growth and productivity of food crops in saline soils represent important research priorities. This study has investigated the role of certain priming techniques to induce salt tolerance of bread wheat. Wheat grains were soaked in 0.2 mm sodium nitroprusside as nitric oxide donor (redox priming), diluted sea water (halopriming) and the combination of both (redox halopriming). Grains were also soaked in distilled water (hydropriming); in addition, untreated grains were taken as control. Our results indicated that priming treatments significantly improved all growth traits and increased leaf pigments concentration as compared to the control. Priming treatments markedly enhanced membrane stability index, proline, total soluble sugars and K+ concentration with simultaneous decrease in the concentration of Na+ and malondialdehyde (MDA). Furthermore, yield and yield‐related traits such as plant height, spike length, total number of tillers, 1000‐grain weight, straw and grain yield considerably affected by priming treatments. Moreover, the grain yield of both genotypes was positively affected by redox halopriming treatment. However, the extent of enhancement was more prominent in Gemmiza‐9 (salt sensitive) than that in Sakha‐93 (salt‐tolerant). Overall, this study clearly indicated that redox halopriming treatment is a promising and handy technique to induce salinity tolerance of wheat genotypes.  相似文献   
1000.
An accurate estimation of stomatal resistance (rS) also under drought stress conditions is of pivotal importance for any process‐based prediction of transpiration and the energy budget of real crop canopies and quantification of drought stress. A new model for rS was developed and parameterized for winter wheat using data from field experiments accounting for the influences of net radiation (RNet), air temperature (TAir) and vapour pressure deficit of the atmosphere (VPD) interacting with an average water potential in the rooted soil (ψRootedSoil). rS is simulated with a limiting factor approach as maximum of the metabolic (related to photosynthesis) and hydraulic (related to drought stress) acting influences assuming that, if drought stress occurs, it will dominate stomatal control: rS = max(rS(TAir), rS(RNet), rS(VPD, ψRootedSoil)). This transitional approach is suited to reproduce measured daily time courses of rS with a varying accuracy for the single measurement dates but performed satisfactorily for the whole data set (r2 = 0.63, RMSE = 59 s m?1, EF = 0.60). This new semi‐empiric approach calculates rS directly from external environmental conditions. Therefore, it can be easily implemented in existing model frameworks as link between operational crop growth models that use the concept of radiation use efficiency instead of mechanistic photosynthesis modelling and soil–vegetation–atmosphere transport models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号