首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83405篇
  免费   4760篇
  国内免费   56篇
林业   2903篇
农学   2275篇
基础科学   563篇
  9176篇
综合类   14765篇
农作物   3063篇
水产渔业   3895篇
畜牧兽医   45645篇
园艺   880篇
植物保护   5056篇
  2018年   1032篇
  2017年   1170篇
  2016年   1084篇
  2015年   935篇
  2014年   1172篇
  2013年   3053篇
  2012年   2119篇
  2011年   2696篇
  2010年   1648篇
  2009年   1754篇
  2008年   2589篇
  2007年   2404篇
  2006年   2403篇
  2005年   2126篇
  2004年   2087篇
  2003年   2076篇
  2002年   1969篇
  2001年   2702篇
  2000年   2803篇
  1999年   2131篇
  1998年   813篇
  1997年   823篇
  1996年   807篇
  1995年   1018篇
  1994年   888篇
  1993年   841篇
  1992年   1930篇
  1991年   2080篇
  1990年   1923篇
  1989年   1936篇
  1988年   1826篇
  1987年   1933篇
  1986年   1976篇
  1985年   1873篇
  1984年   1482篇
  1983年   1298篇
  1982年   880篇
  1979年   1367篇
  1978年   1122篇
  1977年   973篇
  1976年   938篇
  1975年   984篇
  1974年   1273篇
  1973年   1299篇
  1972年   1235篇
  1971年   1147篇
  1970年   1090篇
  1969年   965篇
  1968年   833篇
  1967年   869篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Common bacterial blight (CBB) in edible beans (Phaseolus vulgaris), incited Xanthomonas campestris pv. phaseoli, reduces bean yields and seed quality. The main objective of this study was to determine resistance to common bacterial blight in bean genotypes. Twenty-two bean genotypes grown in Turkey including common and snap bean cultivars/lines were collected from different parts of Turkey and tested for resistance against to Xanthomonas campestris pv. phaseoli strain MFD-11. All the common and snap bean lines/cultivars tested were moderately susceptible, susceptible or highly susceptible, except AG-7117 which was found resistant to Xanthomonas campestris pv. phaseoli. This is the first report of a resistance source in a common bean line (AG-7117) against Xanthomonas campestris pv. phaseoli.  相似文献   
992.
Summary The genus Striga contains some of the most noxious parasitic plants, which have a devastating impact on cereal production in Africa; of most importance are Striga hermonthica and Striga asiatica . Complete resistance to infection by Striga species does not exist in cultivated cereals. Of great interest is the possibility that wild relatives of cereals may provide a genetic basis for resistance or tolerance to infection and may be of enormous value for the development of resistant crops. A wild relative of cultivated sorghum, Sorghum arundinaceum , demonstrated tolerance to infection by S. asiatica , with little impact of S. asiatica on host growth or grain production compared with the detrimental impact of the parasite on cultivated sorghum. Infection by S.hermonthica , however, had a significant influence on host performance for both wild and cultivated sorghum. Differences in host:parasite responses may be explained by the timing of parasite attachment and differences in host specificity for these two Striga species.  相似文献   
993.
Growth and reproduction by powdery mildew pathogens is generally inhibited by decreasing relative humidity. With Erysiphe sp. on Rhododendron cv. Elizabeth, the initial stages of colony development were adversely affected by reducing the relative humidity from 100% to 70 and 85%. No significant effects on secondary or tertiary hyphal development were detected. Light intensity and photoperiod both had considerable effect on the induced resistance response of the host. Over the initial 5 days of colonization there were no significant differences between any of the treatments. After 13 days, however, expansion of fungal colonies at 180 photosynthetic active radiation (PAR) was limited solely to the area initially infested by primary hyphae. By comparison, in colonies grown at 80 PAR regardless of day length, secondary and tertiary hyphae had extended beyond the area first colonized. These effects resulted in differing morphologies, small colonies of densely packed hyphae formed at 180 PAR compared with open spreading colonies at 80 PAR.  相似文献   
994.
995.
Colletotrichum coccodes is the causal agent of the potato blemish disease black dot. Two PCR primer sets were designed to sequences of the ribosomal internal transcribed spacer (ITS1 and ITS2) regions for use in a nested PCR. The genus-specific outer primers (Cc1F1/Cc2R1) were designed to regions common to Colletotrichum spp., and the species-specific nested primers (Cc1NF1/Cc2NR1) were designed to sequences unique to C . coccodes . The primer sets amplified single products of 447 bp (Cc1F1/Cc2R1) and 349 bp (Cc1NF1/Cc2NR1) with DNA extracted from 33 European and North American isolates of C. coccodes. The specificity of primers Cc1NF1/Cc2NR1 was confirmed by the absence of amplified product with DNA of other species representing the six phylogenetic groups of the genus Colletotrichum and 46 other eukaryotic and prokaryotic plant pathogenic species. A rapid procedure for the direct extraction of DNA from soil and potato tubers was used to verify the PCR assay for detecting C. coccodes in environmental samples. The limit of sensitivity of PCR for the specific detection of C. coccodes when inoculum was added to soils was 3·0 spores per g, or the equivalent of 0·06 microsclerotia per g soil, the lowest level of inoculum tested. Colletotrichum coccodes was also detected by PCR in naturally infested soil and from both potato peel and peel extract from infected and apparently healthy tubers. Specific primers and a TaqMan fluorogenic probe were designed to perform quantitative real-time (TaqMan) PCR to obtain the same levels of sensitivity for detection of C. coccodes in soil and tubers during a first-round PCR as with conventional nested PCR and gel electrophoresis. This rapid and quantitative PCR diagnostic assay allows an accurate estimation of tuber and soil contamination by C. coccodes .  相似文献   
996.
Seed-grown trees and six clonal lines of 3·5–4·5-year-old Eucalyptus marginata (jarrah) growing in a rehabilitated bauxite mine site in the jarrah forest were underbark-inoculated on lateral branches (1995) or simultaneously on lateral branches and lateral roots (1996) with isolates of Phytophthora cinnamomi in late autumn. Individual seedlings from which the clonal lines were derived had previously been assessed as either resistant (RR) or susceptible (SS) to P. cinnamomi . At harvest, the acropetal lesion and colonization lengths were measured. Overall, the length of colonization in roots and branches was more consistent as a measure of resistance than lesion length, because colonization length recorded the recovery of P. cinnamomi from macroscopically symptomless tissue ahead of the lesion which, on some occasions, was up to 6 cm. In both trials, one RR clonal line was able to contain the P. cinnamomi isolates consistently, as determined by small lesion and colonization lengths in branches and roots. In contrast, the remaining two RR clonal lines used in both trials were no different from the SS line in their ability to contain lesions or colonization. These latter two RR lines may therefore not be suitable for use in rehabilitation of P. cinnamomi -infested areas. Differences in lesion and colonization lengths among P. cinnamomi isolates occurred only in the 1995 trial. Colonization and lesion lengths in branches were up to eight times greater in 1996 than in 1995, but the relative rankings of clonal lines were consistent between trials. Although colonization was always greater in branches than roots, the relative rankings of the lines were similar between branch and root inoculations. Branch inoculations are a valid option for testing the resistance and susceptibility of young jarrah trees to P. cinnamomi .  相似文献   
997.
Xanthomonas campestris pv. vitians , the causal agent of bacterial leaf spot of lettuce (BLS), can be seedborne, but the mechanism by which the bacteria contaminates and/or infects lettuce seed is not known. In this study, the capacity of X. campestris pv. vitians to enter and translocate within the vascular system of lettuce plants was examined. The stems of 8- to 11-week-old lettuce plants were stab-inoculated, and movement of X. campestris pv. vitians was monitored at various intervals. At 4, 8, 12 and 16 h post-inoculation (hpi), X. campestris pv. vitians was recovered from 2 to 10 cm above (depending on stem length) and 2 cm below the inoculation site. Xanthomonas campestris pv. vitians was also recovered from surface-disinfested stem sections of spray-inoculated plants. Together, these results are consistent with X. campestris pv. vitians invading and moving systemically within the vascular system of lettuce plants. To investigate the mechanism of seed contamination, lettuce plants at the vegetative stage of growth were spray-inoculated with X. campestris pv. vitians and allowed to develop BLS. Seed collected from these plants had a 2% incidence of X. campestris pv. vitians external colonization, but no bacteria were recovered from within the seed.  相似文献   
998.
In controlled environment experiments, sporulation of Pyrenopeziza brassicae was observed on leaves of oilseed rape inoculated with ascospores or conidia at temperatures from 8 to 20°C at all leaf wetness durations from 6 to 72 h, except after 6 h leaf wetness duration at 8°C. The shortest times from inoculation to first observed sporulation ( l 0), for both ascospore and conidial inoculum, were 11–12 days at 16°C after 48 h wetness duration. For both ascospore and conidial inoculum (48 h wetness duration), the number of conidia produced per cm2 leaf area with sporulation was seven to eight times less at 20°C than at 8, 12 or 16°C. Values of Gompertz parameters c (maximum percentage leaf area with sporulation), r (maximum rate of increase in percentage leaf area with sporulation) and l 37 (days from inoculation to 37% of maximum sporulation), estimated by fitting the equation to the observed data, were linearly related to values predicted by inserting temperature and wetness duration treatment values into existing equations. The observed data were fitted better by logistic equations than by Gompertz equations (which overestimated at low temperatures). For both ascospore and conidial inoculum, the latent period derived from the logistic equation (days from inoculation to 50% of maximum sporulation, l 50) of P. brassicae was generally shortest at 16°C, and increased as temperature increased to 20°C or decreased to 8°C. Minimum numbers of spores needed to produce sporulation on leaves were ≈25 ascospores per leaf and ≈700 conidia per leaf, at 16°C after 48 h leaf wetness duration.  相似文献   
999.
1000.
The name Tomato yellow leaf curl virus (TYLCV) has been applied to a group of virus species of the genus Begomovirus in the family Geminiviridae that cause a similar tomato disease worldwide. In 1995, TYLCV was first reported in Algarve (southern Portugal) as responsible for an epidemic outbreak of a severe tomato disease. Molecular data have shown that this Portuguese TYLCV isolate was distinct from those previously reported in Europe, as it belonged to the TYLCV-Israel species 1 . Since then, TYLCV epidemics have occurred annually, being a limiting factor mainly for autumn/winter glasshouse tomato crops. In 1998, TYLCV was also found associated with the emergence of a novel disease of Phaseolus vulgaris in Algarve. The affected bean plants were severely stunted and gave no marketable yield. However, the disease occurs only sporadically, even in conditions of high TYLCV infection pressure. Recently, Tomato chlorosis virus (ToCV), a whitefly-transmitted bipartite closterovirus (genus Crinivirus , family Closteroviridae ), was found associated with an unusual tomato yellow leaf syndrome, in single or mixed infection with TYLCV. The impact of this new pathosystem on tomato production has yet to be determined. Surveys are in progress in mixed cropping systems infested with whiteflies. So far, TYLCV and ToCV diseases are limited to the Algarve region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号