首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1145篇
  免费   140篇
畜牧兽医   1285篇
  2023年   2篇
  2020年   1篇
  2019年   2篇
  2018年   21篇
  2017年   25篇
  2015年   94篇
  2014年   121篇
  2013年   124篇
  2012年   83篇
  2011年   18篇
  2010年   65篇
  2009年   157篇
  2008年   46篇
  2007年   6篇
  2006年   5篇
  2005年   8篇
  2004年   3篇
  2003年   7篇
  2002年   30篇
  2001年   33篇
  2000年   11篇
  1999年   32篇
  1998年   66篇
  1997年   37篇
  1996年   44篇
  1995年   57篇
  1994年   49篇
  1993年   36篇
  1992年   35篇
  1991年   48篇
  1990年   7篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
排序方式: 共有1285条查询结果,搜索用时 62 毫秒
11.
12.
13.
14.
15.
16.
17.
18.
Objective—To determine the safety and efficacy of propofol, after detomidine-butorphanol premedication, for induction and anesthetic maintenance for carotid artery translocation and castration or ovariectomy in goats. Study Design—Case series. Animals—Nine 4-month-old Spanish goats (17.1 ± 2.6 kg) were used to evaluate propofol anesthesia for carotid artery translocation and castration or ovariectomy. Methods—Goats were premedicated with detomidine (10 μg/kg intramuscularly [IM]) and butorphanol (0.1 mg/kg IM) and induced with an initial bolus of propofol (3 to 4 mg/kg intravenously [IV]). If necessary for intubation, additional propofol was given in 5-mg (IV) increments. Propofol infusion (0.3 mg/kg/min IV) was used to maintain anesthesia, and oxygen was insufflated (5 L/min). The infusion rate was adjusted to maintain an acceptable anesthetic plane as determined by movement, muscle relaxation, ocular signs, response to surgery, and cardiopulmonary responses. Systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, heart rate (HR), ECG, respiratory rate (RR), Spo2, and rectal temperature (T) were recorded every 5 minutes postinduction; arterial blood gas samples were collected every 15 minutes. Normally distributed data are represented as mean ± SD; other data are medians (range). Results—Propofol (4.3 ± 0.9 mg/kg IV) produced smooth, rapid (15.2 ± 6 sec) sternal recumbency. Propofol infusion (0.52 ± 0.11 mg/kg/min IV) maintained anesthesia. Mean anesthesia time was 83 ± 15 minutes. Muscle relaxation was good; eye signs indicated surgical anesthesia; two goats moved before surgery began; one goat moved twice during laparotomy. Means are reported over the course of the data collection period. Means during the anesthesia for pHa (arterial PH), Paco2, Pao2, HCO3, and BE (base excess) ranged from 7.233 ± 0.067 to 7.319 ± 0.026, 54.1 ± 4.6 to 65.3 ± 12.0 mm Hg, 133.1 ± 45.4 to 183.8 ± 75.1 mm Hg, 26.9 ± 2.6 to 28.2 ± 2.1 mEq/L, and -0.8 ± 2.9 to 1.4 ± 2.2 mEq/L. Means over time for MAP were 53 ± 12 to 85 ± 21 mm Hg. Mean HR varied over time from 81 ± 6 to 91 ± 11 beats/minute; mean RR, from 9 ± 8 to 15 ± 5 breaths/minute; Spo2, from 97 ± 3% to 98 ± 3%; mean T, from 36.0 ± 0.6±C to 39.1 ± 0.7±C. Over time, Spo2 and Sao2 did not change significantly; HR, RR, T, and Paco2 decreased significantly; SAP, DAP, MAP, pHa, Pao2, and BE increased significantly. HCO3 concentrations increased significantly, peaking at 45 minutes. Recoveries were smooth and rapid; the time from the end of propofol infusion to extubation was 7.3 ± 3 minutes, to sternal was 9.2 ± 5 minutes, and to standing was 17.7 ± 4 minutes. Median number of attempts to stand was two (range of one to four). Postoperative pain was mild to moderate. Conclusions—Detomidine-butorphanol-propofol provided good anesthesia for carotid artery translocation and neutering in goats. Clinical Relevance—Detomidine-butorphanol-propofol anesthesia with oxygen insufflation may be safely used for surgical intervention in healthy goats.  相似文献   
19.
Objective—To determine the neuromuscular effects of doxacurium chloride and to construct a dose-response curve for the drug in isoflurane-anesthetized dogs. Design—Randomized, controlled trial. Animals—Six healthy, adult, mixed-breed dogs (five female, one male) weighing 24.8 ° 2.8 kg. Methods—Anesthesia was induced with isoflurane in oxygen and maintained with 1.9% to 2.3% end-tidal isoflurane concentration. Paco2 was maintained between 35 and 45 mm Hg with mechanical ventilation. Mechanomyography was used to quantitate the evoked twitch response of the paw after supramaximal train-of-four stimulation of the superficial peroneal nerve. After baseline values were recorded, the dogs received one of three doses of doxacurium (2.0, 3.5, 4.5 μg/kg of body weight) or a saline placebo intravenously in random order. All dogs received all treatments with at least 7 days between studies. After drug administration, the degree of maximal first twitch depression compared with baseline (T,%) was recorded. Dose-response relations of doxacurium were plotted in log dose-probit format and analyzed by linear regression to determine effective dose (ED50 and ED90) values for doxacurium. Results—The median log dose-probit response curve showed good data correlation (r= .999) with estimates of the ED50 (2.1 μg/kg) and ED90 (3.5 μg/kg) for doxacurium in isoflurane-anesthetized dogs. Mean ± SD values for T1% (first twitch tension compared with baseline) at maximal depression after drug administration, onset (time from drug administration to maximal depression of T1%), duration (time from maximal depression of T1% to 25% recovery of T1%), and recovery (time from 25% to 75% recovery of T1%) times were 92%± 4%, 40 ± 5 minutes, 108 ± 31 minutes, and 42 ± 11 minutes for dogs treated with 3.5 μg/kg of doxacurium and 94%± 7%, 41 ± 8 minutes, 111 ± 33 minutes, and 37 ± 10 minutes for dogs treated with 4.5 μg/kg of doxacurium. Conclusion and Clinical Relevance—We conclude that doxacurium is a long-acting neuromuscular blocking agent with a slow onset of action. Doxacurium can be used to provide muscle relaxation for long surgical procedures in isoflurane-anesthetized dogs. Interpatient variability, particularly of duration of drug action, may exist in the neuromuscular response to the administration of doxacurium in dogs.  相似文献   
20.
Objective —To measure pullout strength of four pin types in avian humeri and tibiotarsi bones and to compare slow-speed power and hand insertion methods.
Study Design —Axial pin extraction was measured in vitro in avian bones.
Animal Population —Four cadaver red-tailed hawks and 12 live red-tailed hawks.
Methods —The pullout strength of four fixator pin designs was measured: smooth, negative profile threaded pins engaging one or two cortices and positive profile threaded pins. Part 1: Pins were placed in humeri and tibiotarsi after soft tissue removal. Part 2: Pins were placed in tibiotarsi in anesthetized hawks using slow-speed power or hand insertion.
Results —All threaded pins, regardless of pin design, had greater pullout strength than smooth pins in all parts of the study ( P < .0001). The cortices of tibiotarsi were thicker than the cortices of humeri ( P < .0001). There were few differences in pin pullout strengths between threaded pin types within or between bone groups. There were no differences between the pullout strength of pins placed by slow-speed power or by hand.
Conclusions —There is little advantage of one threaded pin type over another in avian humeri and tibiotarsi using currently available pin designs. There were few differences in pin pullout strengths between humeri and tibiotarsi bones. It is possible that the ease of hand insertion in thin cortices minimizes the potential for wobbling and therefore minimizes the difference between slow-speed drill and hand insertion methods.
Clinical Relevance —Threaded pins have superior bone holding strength in avian cortices and may be beneficial for use with external fixation devices in birds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号