首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   29篇
林业   31篇
农学   2篇
  20篇
综合类   46篇
农作物   26篇
水产渔业   6篇
畜牧兽医   215篇
园艺   2篇
植物保护   23篇
  2023年   3篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   9篇
  2017年   3篇
  2016年   12篇
  2015年   10篇
  2014年   9篇
  2013年   18篇
  2012年   13篇
  2011年   12篇
  2010年   10篇
  2009年   12篇
  2008年   15篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   16篇
  2003年   7篇
  2002年   14篇
  2001年   5篇
  2000年   6篇
  1999年   10篇
  1998年   13篇
  1997年   13篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1985年   5篇
  1984年   5篇
  1983年   3篇
  1979年   4篇
  1976年   5篇
  1975年   2篇
  1974年   3篇
  1970年   2篇
  1967年   4篇
  1960年   2篇
  1949年   3篇
  1948年   4篇
  1947年   7篇
  1946年   4篇
  1945年   4篇
  1940年   2篇
排序方式: 共有371条查询结果,搜索用时 31 毫秒
361.
Activation of lysosomal function during dendritic cell maturation   总被引:1,自引:0,他引:1  
In response to a variety of stimuli, dendritic cells (DCs) transform from immature cells specialized for antigen capture into mature cells specialized for T cell stimulation. During maturation, the DCs acquire an enhanced capacity to form and accumulate peptide-MHC (major histocompatibility complex) class II complexes. Here we show that a key mechanism responsible for this alteration was the generalized activation of lysosomal function. In immature DCs, internalized antigens were slowly degraded and inefficiently used for peptide loading. Maturation induced activation of the vacuolar proton pump that enhanced lysosomal acidification and antigen proteolysis, facilitating efficient formation of peptide-MHC class II complexes. Lysosomal function in DCs thus appears to be specialized for the developmentally regulated processing of internalized antigens.  相似文献   
362.
Spatial models in ecology predict that populations may form patchy distributions within continuous habitats, through strong predator-prey or host-parasitoid interactions combined with limited dispersal. Empirical support of these models is provided. Parasitoids emanating from a population outbreak of tussock moths (Orgyia vetusta) suppressed the growth of nearby experimental populations of the moth, while experimental populations farther away were able to grow. This result explains the observed localized nature of tussock moth outbreaks and illustrates how population distributions can be regulated by dynamic spatial processes.  相似文献   
363.
The objective of this study was to determine the effect of offering animals a multiforage choice (MF) of fresh herbages on dry matter intake (DMI), live weight gain, and animal welfare, in comparison with a monotonous diet of ryegrass (Lolium perenne L.). Twenty ram lambs (30.5 ± 0.9 kg initial live weight; mean ± SEM), were randomly allocated to either a diet consisting of diverse MF choice or a single forage ryegrass (SF) diet (n = 10 per treatment) for 35 d. Both diets were fed ad libitum; however, the MF diet was composed of set dry matter ratios of 24% chicory (Cichorium intybus L.), 30% lucerne (Medicago sativa L.), 25% plantain (Plantago lanceolata L.), and 21% ryegrass. The DMI of the MF lambs was 48% greater (P < 0.01) and the within animal day-to-day coefficient of variation (CV) of intake was 26% lower (P < 0.01) than the SF lambs. The average daily gain (ADG) of lambs offered the MF diet was 92% greater (P < 0.01) than the lambs offered the SF diet. The within-animal day-to-day CV of intake was negatively related to ADG (r = −0.59; P < 0.01). The MF lamb’s urinary N concentration was 30% lower (P < 0.01) than that of the SF lambs. The SF lambs spent more time (P < 0.05) exhibiting stereotypic behaviors in the afternoon and spent more time observing other animals than the MF. Overall, allocating an MF choice of fresh herbages as opposed to a single forage diet of ryegrass increases DMI and thereby animal performance, while potentially reducing urinary N excretion.  相似文献   
364.
365.
366.
Earth-based observations of Jupiter indicate that the Galileo probe probably entered Jupiter's atmosphere just inside a region that has less cloud cover and drier conditions than more than 99 percent of the rest of the planet. The visual appearance of the clouds at the site was generally dark at longer wavelengths. The tropospheric and stratospheric temperature fields have a strong longitudinal wave structure that is expected to manifest itself in the vertical temperature profile.  相似文献   
367.
Garrett  K. A.  Kabbage  M.  Bockus  W. W. 《Precision Agriculture》2004,5(3):291-301
For pathogens with highly localized inoculum, controlled positioning of susceptible plants can be used to delay exposure to the pathogen. For example, when wheat is direct-drilled in fields where wheat was infected by Gaeumannomyces graminis var. tritici (Ggt) in the previous season, the remaining rows of wheat crowns serve as an inoculum source for the new wheat planting. In order to determine how different seeding patterns of wheat might affect yield loss to Ggt, we constructed a mathematical model in three stages. First, we calculated the probability density function for the distance between a new seed and the nearest old row of crowns for two main planting scenarios: parallel to the previous year's rows or at an angle to them. Second, we used estimates from Kabbage and Bockus [Kabbage, M. and Bockus, W. W. 2002. Plant Disease 86, 298–303] of the yield loss to Ggt as a function of the distance between wheat seed and inoculum source. Third, we combined these two models to estimate the average yield loss for different planting patterns. We estimated that planting parallel to and between the previous year's rows would cut yield loss almost in half for a typical row spacing compared to angled planting, provided there was not an important offset, or bias, in the position of the parallel planting. Planter wobble was relatively unimportant if there was no systematic bias in position.  相似文献   
368.
The microscopic pathway along which ions or molecules in a crystal move during a structural phase transition can often be described in terms of a collective vibrational mode of the lattice. In many cases, this mode, called a "soft" phonon mode because of its characteristically low frequency near the phase transition temperature, is difficult to characterize through conventional frequency-domain spectroscopies such as light or neutron scattering. A femtosecond time-domain analog of light-scattering spectroscopy called impulsive stimulated Raman scattering (ISRS) has been used to examine the soft modes of two perovskite ferroelectric crystals. The low-frequency lattice dynamics of KNbO(3) and BaTiO(3) are clarified in a manner that permits critical evaluation of microscopic models for their ferroelectric transitions. The results illustrate the advantages of ISRS over conventional Raman spectroscopy of low-frequency, heavily damped soft modes.  相似文献   
369.
370.
A combined proteomic approach was applied for the separation, identification, and comparison of two major storage proteins, beta-conglycinin and glycinin, in wild (Glycine soja) and cultivated (Glycine max) soybean seeds. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with three different immobilized pH gradient (IPG) strips was an effective method to separate a large number of abundant and less-abundant storage proteins. Most of the subunits of beta-conglycinin were well-separated in the pH range 3.0-10.0, while acidic and basic glycinin polypeptides were well-separated in pH ranges 4.0-7.0 and 6.0-11.0, respectively. Although the overall distribution pattern of the protein spots was similar in both genotypes using pH 3.0-10.0, variations in number and intensity of protein spots were better resolved using a combination of pH 4.0-7.0 and pH 6.0-11.0. The total number of storage protein spots detected in wild and cultivated genotypes was approximately 44 and 34, respectively. This is the first study reporting the comparison of protein profiles of wild and cultivated genotypes of soybean seeds using proteomic tools.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号