首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17656篇
  免费   116篇
林业   3726篇
农学   1348篇
基础科学   142篇
  2943篇
综合类   753篇
农作物   2180篇
水产渔业   1963篇
畜牧兽医   1609篇
园艺   1134篇
植物保护   1974篇
  2024年   2篇
  2023年   23篇
  2022年   48篇
  2021年   88篇
  2020年   100篇
  2019年   92篇
  2018年   2803篇
  2017年   2758篇
  2016年   1249篇
  2015年   112篇
  2014年   100篇
  2013年   102篇
  2012年   894篇
  2011年   2224篇
  2010年   2154篇
  2009年   1311篇
  2008年   1361篇
  2007年   1618篇
  2006年   64篇
  2005年   129篇
  2004年   128篇
  2003年   178篇
  2002年   82篇
  2001年   18篇
  2000年   48篇
  1999年   8篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1993年   13篇
  1992年   10篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   11篇
  1987年   1篇
  1983年   2篇
  1978年   2篇
  1977年   4篇
  1972年   1篇
  1969年   2篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
991.
This study characterized soil chemical and microbiological properties in hay production systems that received from 0 to 600 kg plant-available N (PAN) ha−1 year−1 from either swine lagoon effluent (SLE) or ammonium nitrate (AN) from 1999 to 2001. The forage systems contained plots planted with bermudagrass (Cynodon dactylon L.) or endophyte-free tall fescue (Festuca arundinaceae Schreb.). In March 2004, the plots were sampled for measurements of a suite of soil chemical and microbiological properties. Nitrogen fertilization rates were significantly correlated with soil pH and K2SO4-extractable soil C but not with total soil C, soil C/N ratio, electrical conductivity, or Mehlich-3-extractable nutrients. Soil supplied with SLE had significantly lower Mehlich-3-extractable nutrients than the soil supplied with AN. Two indicators of soil N-supplying capacity (potentially mineralizable N and amino sugar N) varied with plant species and the type of N fertilizer. However, they generally peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Soil microbial biomass C also peaked at an application rate of 200 or 400 kg PAN ha−1 year−1. Nitrification potential was significantly higher in soil supplied with AN than in the unfertilized control but was similar between SLE-fertilized and unfertilized soils. Our results indicated that an application rate as high as 600 kg PAN ha−1 year−1 did not benefit soil microbial biomass, microbial activity, and N transformation processes in these forage systems.  相似文献   
992.
Phosphorus (P) immobilization in soil involves geochemical (e.g., sorption, precipitation, and diffusion) and microbiological (microbial uptake) processes. Using a Brazilian Ultisol, relative contributions of both processes to the total immobilization of applied P over 14 days were investigated. The P immobilized by microbes as interpreted by microbial suppression (achieved by mercury sterilization) was 17, 50, 54, and 56% (of the total immobilized P) on days 3, 7, 10, and 14 after fertilization, respectively. In the short-term (1 to 3 days), microbes played less of a role than did the physical effect of shaking the soil, but became the major factor by days 7 to 14. Geochemical process that might be considered short-term ageing caused only 13–16% of the total immobilization in the same time period above. Calculations supported the interpretation that measurable diffusion occurred across water films on the soil particles.  相似文献   
993.
Leguminous leys are important sources of nitrogen (N), especially in forage-based animal production and organic cropping. Models for estimating total N2 fixation of leys—including below-ground plant-derived N (BGN)—are based on grazed or harvested leys. However, green manure leys can have different proportions of above-ground plant-derived N (AGN) and BGN when subjected to different cutting regimes. To investigate the effects of cutting on N distribution in white clover, a pot experiment was carried out using 15N techniques to determine N2 fixation, N rhizodeposition and root C and N content of cut and uncut white clover (Trifolium repens L. cv. Ramona) plants. Percentage N derived from air (%Ndfa) was lower in uncut (63%) than in cut (72%) plants, but total Ndfa was not significantly affected by cutting. The higher reliance on N2 fixation in cut plants was thus counterbalanced by lower biomass and total N content. With BGN taken into account, total plant-derived N increased by approximately 50% compared with AGN only. Cutting did not affect the proportion of BGN to standing shoot biomass N after regrowth, but decreased the proportion of BGN to total shoot biomass production during the entire growth period. Thus, estimates of N fixation in green manure leys should consider management practices such as cutting regime, as this can result in differences in above- and below-ground proportions of plant-derived N.  相似文献   
994.
This study reports for the first time the presence of diazotrophic bacteria belonging to the genera Achromobacter and Zoogloea associated with wheat plants. These bacterial strains were identified by the analysis of 16S rDNA sequences. The bacterium IAC-AT-8 was identified as Azospirillum brasiliense, whereas isolates IAC-HT-11 and IAC-HT-12 were identified as Achromobacter insolitus and Zoogloea ramigera, respectively. A greenhouse experiment involving a non-sterilized soil was carried out with the aim to study the endophytic feature of these strains. After 40 days from inoculation, all the strains were in the inner of roots, but they were not detected in soil. In order to assess the location inside wheat plants, an experiment was conducted under axenic conditions. Fifteen days after inoculation, preparations of inoculated plants were observed by the scanning electron microscope, using the cryofracture technique, and by the transmission electron microscope. It was observed that all isolates were present on the external part of the roots and in the inner part at the elongation region, in cortex cells, but not in the endodermis or in the vascular bundle region. No colonizing bacterial cells were observed in wheat leaves.  相似文献   
995.
An experiment was conducted to investigate the effects of earthworm (Metaphire guillelmi) activities on rice photosynthates distribution in plant–soil system through 14C pulse-labelling method. Rice was planted in pots, and maize straw was mulched on the surface with or without earthworms. Rice plants at tillering stage or heading stage were labelled with 14CO2. Plant and soil were sampled 15 days after labelling at the tillering or heading stage and at harvest. Rice growth was inhibited by earthworms (M. guillelmi) at early stage, but the inhibition disappeared at later stage. Earthworms significantly (P < 0.01) increased the 14C percentage in root at day 15 after tillering stage labelling, but the effect disappeared at harvest. Earthworms (M. guillelmi) significantly (P < 0.01) increased the 14C percentage in root at day 15 after heading stage labelling and increased 14C percentage in soil at harvest. Earthworms decreased the percentages of total organic 14C (TO14C) present as microbial biomass 14C (MB14C) and increased the percentages of total organic 14C present as dissolved organic 14C (DO14C) at all sampling times. It is suggested that earthworms might alter the transfer of plant photosynthates from the aboveground to the belowground, and thus, soil active C pool. However, these data should be also confirmed in the field.  相似文献   
996.
The aim of this paper was to assess biodiversity among different habitats of an organic farm and the relationships between some soil properties, nematode taxonomic diversity, and soil food web condition. Eight habitats were studied in the farm: ponds, ditches, a riparian corridor, hedgerows, and four agricultural fields (mustard, oats, fallow, and legumes). The undisturbed riparian corridor had higher soil and concentrations, and potentially mineralizable N and higher abundances of bacterivore nematodes and longer food webs. Canonical correlation analysis showed associations between habitats and nematode trophic groups: predatory and bacterial-feeding nematodes in the riparian corridor and hedgerows, omnivore nematodes in the ponds and ditches, and fungal-feeding nematodes in the legume field. Soil chemical and physical properties mirrored the aboveground farm patterns and were more similar among habitats that were or had been cultivated, compared to the riparian corridor. Soil food web indices, based on functional analysis of nematode faunal composition, reflected the aboveground landscape heterogeneity. Discriminant analysis indicated that soil food web indices separated the two most disturbed habitats (ponds and tailwater ditches) from the two least disturbed habitats (the riparian corridor and hedgerows). The indices correlated with soil functioning as inferred by soil properties. Abundance of nematode taxa was not associated with aboveground landscape patterns. The complexity of the soil food web may have been influenced by (1) environmental factors that differed between years, (2) different time periods since disturbance in the various habitats, and (3) movement of nutrients and organisms by water flow between habitats in the farmscale.  相似文献   
997.
This paper explored the potential of application of in situ ion exchange resin membrane (IEM) technique for assessing soil nitrogen (N) availability and spatial distribution in New Zealand grazed pastures. Field and incubation experiments conducted to test the technique proved IEM technique to be a useful approach to monitoring the continuous changes in soil mineral N in pasture soils. The field testing showed that the IEM technique reflects both differences in pool size and mineral N flux, while 2-M KCl extraction reflects only pool size at the sampling. Testing the effects of residence time, temperature, soil inorganic N content, and soil water content through diffusion modeling offers further support for using IEM to explore the complex dynamics of nitrogen availability in pasture soils.  相似文献   
998.
Climate change is predicted to reduce or delay annual wintertime snow pack formation in the forests of the northeastern US. Any delay in snowpack formation could increase soil freezing in winter and, thereby, alter soil characteristics and processes. We examined the hypothesis that delayed snowpack would disrupt soil structure and change organic matter bioavailability in an experimental snow removal study at the Hubbard Brook Experimental Forest (HBEF), NH, USA. Pairs of reference and snow removal treatment plots were studied in four different sites at HBEF. Snow was removed from November–January of two winters, inducing soil freezing throughout both winters. Size class distribution and organic matter concentration and content of aggregates, and carbon and nitrogen mineralization potential of size fractions were quantified for surface mineral soils in the spring of both years immediately after snowmelt. In the first year of sampling, the only significant effect of snow removal was an increase in the smallest (<53 μm) size fraction of mineral soil. In the second year, snow removal increased organic matter concentrations of macroaggregate (250–2,000 μm) and microaggregate (53–250 μm) size fractions. This change corresponded to an increase in net N mineralization potential and the ratio of N to C mineralized in the macroaggregate fraction, but there were no effects of snow removal on C mineralization. We propose that soil freezing increases the movement of organic matter from organic to mineral soil horizons and increases the N content of mineralizable substrates in mineral soil following years with delayed snowpack formation.  相似文献   
999.
Regulation of amino acid biodegradation in soil as affected by depth   总被引:1,自引:0,他引:1  
Dissolved organic nitrogen (DON) and in particular free amino acids represent a key pool in the terrestrial soil C and N cycle. The factors controlling the rate of turnover of this pool in soil, however, remain poorly understood. We investigated the factors regulating the rate of amino acid turnover at different depths (up to 1.2 m) in five low-input, acid soil profiles. Within the root zone (0–60 cm), amino acids constituted 8% of the DON and represented only a small fraction of plant available N. In all the soil profiles, the rate of amino acid mineralisation decreased progressively with depth. The average half-life of the exogenously added amino acids in the soil was 5.8 h in topsoils (0–10 cm), falling to 20 h at a depth of 50 cm and to 33 h at 100 cm. Generally, the rate of amino acid mineralisation correlated positively with total soil C and N, soil microbial activity (basal soil respiration rate) and soil content. The relatively rapid rates of microbial amino acid assimilation in subsoils below the root zone (>60 cm) indicate that long-term transport of amino acids (e.g. from soil to freshwaters) will be low. Based upon the C-to-N ratio of the amino acid substrate and the microbial C assimilation efficiency, we estimate that approximately 40–60% of the amino acid-N will be excreted as . In conclusion, the rapid rate of free amino acid turnover and their low concentration in soil solution indicate that the formation of inorganic N ( and ) in soil is limited primarily by the rate of free amino acid appearance in soil and not by the rate of amino acid mineralisation.  相似文献   
1000.
Six hundred accessions of chickpea (Cicer arietinum L.) landraces and its wild relatives from 28 different countries, available at Australian Temperate and Field Crops Collection (ATFCC) were screened for tolerance to salt under greenhouse conditions using three sampling strategies; (1) random sampling of 200 accessions from different countries, (2) restricted random sampling of 200 accessions from geographical regions with salinity problems and high diversity (Middle East and West & South Asia) and (3) as for strategy 1 but with a reduced representation of accessions from the geographical regions used in strategy 2. Degree of salt tolerance was based on necrosis scores and shoot biomass reduction relative to unstressed controls at harvest after subjecting stressed plants to salt treatment from 21 to 42 days after sowing. There was a wide variation in salinity tolerance determined by both measures. For sampling strategies 1, 2 and 3 respectively; 24, 28 and 14% of accessions were salt tolerant. Accessions from the middle east and south Asian (regions with salinity problem, a long history of chickpea cultivation and high diversity) gave a higher probability (P < 0.01) of getting salt tolerant accessions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号