首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   4篇
  国内免费   1篇
林业   27篇
农学   2篇
  101篇
综合类   24篇
农作物   1篇
水产渔业   9篇
畜牧兽医   85篇
植物保护   24篇
  2023年   1篇
  2022年   1篇
  2020年   4篇
  2019年   4篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   12篇
  2012年   19篇
  2011年   23篇
  2010年   7篇
  2009年   16篇
  2008年   21篇
  2007年   21篇
  2006年   11篇
  2005年   15篇
  2004年   10篇
  2003年   13篇
  2002年   11篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1974年   4篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1964年   1篇
  1939年   1篇
  1932年   2篇
排序方式: 共有273条查询结果,搜索用时 15 毫秒
91.
Bark beetle dispersal and host selection behaviour are a complex and poorly understood process, resulting in specific spatio-temporal infestation patterns in forests. Aerial images from the Bavarian Forest National Park (Germany) provide a high-resolution, that is, tree-scale data set for the period 2001–2010, including information about Ips typographus (Col., Curculio., Scolytinae) infestation, the application of sanitary logging, natural forest edges and the area of living spruce susceptible to bark beetle infestation. We combined methods of GIS and image analysis to investigate the infestation probabilities at three types of forest edges under spatial and temporal aspects and compared them to the corresponding probabilities at the stand interior. Our results showed a pronounced infestation predisposition of such edge trees delimiting infestation patches cleared by sanitary logging measures, in particular at the south-facing edge sector. In contrast, edges adjacent to non-cleared infestation were revealed as less attractive for subsequent infestations, but nonetheless more attractive than permanent forest edges or the stand interior. Additionally, we measured near-bark surface air temperature to determine microclimatic differences at those edge- or non-edge sites and related them to predisposition results. Finally, our study emphasized favourable microclimatic conditions—summarized as the “sun-effect”—as a decisive factor enhancing the local infestation probability at recent forest edges in multiple ways. Both insect- and host tree-related reactions to suddenly altered microclimate are supposed to bias arbitrary colonization behaviour at patch and tree level, thereby mainly explaining observed infestation patterns. From the forester’s point of view, our results may contribute to precise bark beetle risk assessment and thus facilitate decision making in forest management.  相似文献   
92.
Maize production trials carried out in eastern middle of Germany from 1999–2007 were used for statistical analysis of the optimum date for silage maize ripeness, quality and yield potential as well as choice of cultivar under drought conditions for silage and energy maize. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of stover) is more suitable for the determination of harvest date, yield maximum and silage maize quality as the dry matter content of the plant. The analysis is cheaper as well as not so material and time-consuming in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond almost with the physiological ripeness of silage maize and are close to the grain dry matter content of 60 to 65%, to the dry matter content of stover under 24% and a ripeness index from 2,5 and higher. Only under these conditions it is possible to reach the optimal ripeness of 30 to 35% in the whole plant silage maize. In dependence on the Silage maize Ripeness Index (SRZ) parameters of silage and energy maize were created differential ripeness optimum, quality and yield potential. The aims of silage and energy maize are similar. The vitality of stover has a greater importance for energy maize. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of stover are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize for the harvesting time. SRI is also suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence.  相似文献   
93.
The impact of alley cropping on post-lignite mine soils developing from quaternary deposits after 9 years of recultivation was evaluated on the basis of microbial indicators, organic C and total N contents, and the isotope characteristics of soil C. Soils were sampled at the 0 to 3, 3 to 10, and 10 to 30 cm depths under black locust (Robinia pseudoacacia L.), poplar (Populus spp.), the transition zone and in the middle of alley under rye (Secale cereale). There was no significant effect of vegetation on microbial properties presumably, due to the high variability, whereas organic C and total N contents at the 0- to 3-cm layer were significantly higher under black locust and poplar than in the transition zone and rye field. Organic C total N contents, and basal respiration, microbial biomass, and microbial quotient decreased with soil depth. Soil organic C and total N contents were more than doubled after 9 years of recultivation, with annual C and N accretion rate of 162 g C org m−2 year−1 and 6 g N t m−2 year−1. Microbial properties indicated that the soils are in early stages of development; the C isotope characteristics confirmed that the sequestered C was predominantly from C3 plants of the alley cropping.  相似文献   
94.
Maize production trials carried out in eastern middle of Germany from 1999–2008 were used for statistical analysis of the optimum date for silage maize ripeness. The Knowledge about difference in ripeness between grain and residual plants at the harvest were used for exactly choice of cultivar under drought conditions for silage and energy maize. The Silage maize Ripeness Index (the ratio of dry matter content of maize grains to dry matter content of residual plants) is more suitable for the leading of plant development, the determination of harvest date and the choice of cultivar as the dry matter content of the plant. The analysis is cheaper as well as not so material and time-consuming with a better financially results in food-, milk- and methane production in comparison to the dry matter content of the silage maize of different hybrid maize populations and environments. Ensilage optimum and yield maximum correspond with the physiological ripeness of silage maize and are close to the grain dry matter content of 64%, to the dry matter content of starch of 33% and a ripeness index from 2.55 to 2.9 for parameter of quality and quantity. Only under these conditions it is possible to reach the optimal ripeness of 33 to 35% in the whole plant silage maize. But under suboptimal conditions the harvest is carried out, if SRI had a maximal value. In dependence on the Silage maize Ripeness Index (SRZ) and (SRI) parameters of silage and energy maize were predicted differential development of ripeness and yield. The aims of silage and energy maize are similar. The Silage maize Ripeness Index (SRI) is, for whole plant maize, better than the Whole Plant Maize Ripeness Index (SRZ) for the choice of a hybrid in Germany. The dry matter content of grain in interaction with the dry matter of residual plants are better than dry matter content of the whole plant maize as ripeness indicator in the production of silage and energy maize at the harvesting time. SRI is also universal suitable for use as a standard in scientific trials and for better characteristic of cultivar types and environmental influence.  相似文献   
95.
The Dynamic Ripeness and Analysis (DRA)-System in maize cultivation describe with the phenological ripeness, stress and selection indicator, the Silage maize Ripeness Index (SRI), the differentiated ripening development in the whole maize plant in addressing the most dominant ripening, growing and environmental conditions at the time of harvest period. The SRI is the quotient of ripeness of grain and residual plant. In addition to fix the correct optimum or agro-eco-efficiently harvest time. The SRI is also capable of the location suitability of the variety to characterize the ripeness specific type of variety as well as the environmental and cultivation conditions to quantify. The consistent use of the DRA-System by the maize growers leads to the desired momentum of ripeness, harvest and choice of varieties parameter. Only few environmentally stable maize varieties with the greatest variety and resistance performance for all utilization from the supposed varieties oversupply reach a consensus economic and ecological if the genotype for sowing corresponds to the phenotype for harvest. When the reference point of ripeness (SRI 2.8), there are only minor, ripeness-specific differences between the types of use (gas, fattening, grain and milk). Associated with the ripeness difference decrease the ripeness degree, better plant health, higher palatability and structure activity in the dairy cow feeding receiving maximum amounts of absolute ground fodder (healthy residual plant), which ultimately leads to a maximum milk production at a lower metabolic load of animals.  相似文献   
96.
Intercropping is of increasing interest in temperate-arable farming systems. The influence of nitrogen (N) fertilization and sowing ratio on concentrations and uptake of calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P) by oat and pea was assessed in three substitutive intercrops on a fertile soil in eastern Austria. N decreased Ca in oat grain and increased P in pea grain as well as Ca and Mg in oat residue and Mg and P in pea residue. Intercropping did not affect nutrient concentrations of oat grain, whereas a lower pea share in intercrops increased P in pea grain. In residue, Ca, K and Mg concentrations were higher in oat and Ca and K partly lower in pea with a lower share of each crop. The oat-dominated intercrops could partly achieve a slightly higher total grain nutrient yield than pure stands at no or low N; however, these benefits diminished with a higher pea share and N input. In comparison to pure stands, higher residue nutrient yields were obtained by intercropping in all sowing ratios and fertilization levels. Consequently, oat–pea intercropping can be a strategy for increasing the macronutrient yield of grain and especially of residue for ruminant feeding.  相似文献   
97.
The consistent appropriate selection of environment-stable varieties, the range of plant without ear up to maximal ripeness ratio of grain to residual plant are the cardinal question in maize cultivation respecting the ripeness, growing and environmental conditions. By permanent control of the ripening process in the pre-harvest period up to ripeness maximum possible ratio of grain to rest plant (real time of harvest) and its detection by the Silage maize Ripeness Index (SRI) as phenological performance, selection and stress indicator the environmental performance potential of all varieties can be exploited, in all years, as well as each location and in all directions of use. The plant without ear as a concrete expression of the reduction of biomass production caused by drought stress and the careless cultivation of unstable varieties provide the base inevitably for drastic, estimated losses with regard to quality, yield, as well as extensive risks in environmental, consumer and animal welfare. Ripe different maize with green, vital and active photosynthesis residual plant with 22?% dry matter is in the field of physiological ripeness of grain by 63?% up to the agro-eco-efficient ripeness point and the interface of all use directions. Silage and energy maize with the SRI of 2.8 and still green residual plant should be continued in the interest of the effectiveness of the high-performance feeding up to the maximum possible ripeness ratio. The establishment of the plant architecture in the form of high maize high of about 225 cm is better for improve the yield potential compared to compact. Such differences were indifferent and not pronounced at the quality indicators. By phenotyping of the production levels in maize, also the risks of all kinds are estimated preventable in addition to the appraisal of quality and yield. In addition an assessment of ripeness, growing and environmental conditions of the crop year can be on the other hand same range based on the SRI retroactively. Interfaces, as the agro-eco-efficient ripeness point, for the coupling of other crop models, a selection index for breeding objectives of all use directions (performance, resistance and food value) as an environmental variable and standard for trial basis have been created with this Dynamic Ripeness and Analysissystem (DRA). The efficiency of the entire production branch is also ecologically to justify itself according to maximize success in each direction of use maize.  相似文献   
98.
In this retrospective study of 41 cats with chronic nasal disease diagnoses included nasal neoplasia (n = 19), idiopathic chronic rhinosinusitis (ICRS) (n = 12), nasopharyngeal polyps (n = 3), foreign bodies (n = 2), nasopharyngeal stenosis (n = 1) and nasal aspergillosis (n = 1). In 3 cats diagnosis could not be established despite thorough work-up. Gender, indoor or outdoor housing, quality or quantity of nasal discharge, bacteriological findings of nasal flushes, radiology and CT findings did not differ significantly between cats with neoplasia and cats with ICRS. Cats with neoplasia were older (3 - 15, median 11 years) and showed clinical signs for a shorter period of time (1 - 8, median 2 months) than cats with ICRS (age 1 - 13, median 7.5 years; signs: 1 - 36, median 5 months). In all cats with neoplasia a mass was detected rhinoscopically, while this was only seen in 30 % of cats with ICRS. The exact diagnosis has to be established by examination of biopsy samples. A combination of physical examination, imaging studies and rhinoscopy with cytological and histopathological examination of samples enhances the likelihood for a correct diagnosis.  相似文献   
99.
Background: Whole blood platelet aggregometry (impedance) is an important method to investigate platelet function disorders. Examination of hemostatic function in sheep is important with respect to their role as an animal model of human disease. Objective: The aim of this study was to evaluate and optimize selected methodological aspects (anticoagulant, agonist concentration) of impedance aggregometry in ovine blood using the new Multiplate 5.0 analyzer. Methods: Blood samples were collected in hirudin anticoagulant from 40 clinically healthy sheep. Samples from selected sheep were collected in citrate, with or without the addition of calcium chloride. The agonists adenosine diphosphate (ADP), collagen, ristocetin, arachidonic acid, and thrombin receptor‐activating peptide (TRAP) were added in several concentrations to induce aggregation. Results: Based on maximum aggregation values and internal precision, no significant difference was found between ADP concentrations of 3–10 μmol/L and collagen concentrations of 3–5 μg/mL (P>.05). The lowest interindividual variation of approximately 3–4‐fold was seen with 4 and 5 μmol/L ADP and 4 and 5 μg/mL collagen. Ristocetin, arachidonic acid, and TRAP did not induce significant aggregation at any concentration. Aggregation results were significantly lower when measured in citrate‐ vs hirudin‐anticoagulated blood, regardless of the presence of calcium chloride. Conclusions: Our results indicate that the multiplate impedance aggregometer is suitable for the measurement of platelet aggregation in sheep using optimal agonist concentrations of 4–5 μmol/L ADP and 4–5 μg/mL collagen. Hirudin‐anticoagulated blood is the preferred sample material.  相似文献   
100.
The effect of 15N-labelled litter of different quality (Luzula sylvatica, a grass species, Vaccinium gaultheroides, a deciduous dwarf shrub, and Calluna vulgaris, a hardy dwarf shrub) and the presence of macro-decomposers (Lumbricus rubellus, Lumbricidae, and Enantiulus nanus, Diplopoda) on the growth of Dactylis glomerata (Poaceae), a grass species abundant on alpine pastureland, was investigated. After 4 months, the presence of soil animals significantly increased litter mass loss of L. sylvatica, V. gaultheroides and C. vulgaris by 27%, 11% and 40%, respectively. Soil animals generally reduced microbial biomass but significantly increased it in treatments where either L. sylvatica or C. vulgaris was present. The presence of soil animals significantly increased shoot and root biomass of D. glomerata by 48% and 64%, respectively. L. rubellus increased the transfer of 15N from the litter into plants. We conclude that macro-decomposers increased nutrient mobilization and plant uptake of nutrients mineralized from recalcitrant litter materials. Litter of L. sylvatica contributed most to the 15N uptake by D. glomerata, suggesting that litter quality is crucial for the cycling of nutrients on abandoned alpine pastureland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号