首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   21篇
  国内免费   2篇
林业   3篇
  3篇
综合类   28篇
农作物   5篇
水产渔业   7篇
畜牧兽医   185篇
园艺   2篇
植物保护   3篇
  2023年   5篇
  2021年   4篇
  2020年   7篇
  2019年   3篇
  2018年   11篇
  2017年   7篇
  2016年   8篇
  2015年   1篇
  2014年   16篇
  2013年   20篇
  2012年   4篇
  2011年   8篇
  2010年   11篇
  2009年   14篇
  2008年   5篇
  2007年   7篇
  2006年   8篇
  2005年   3篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   5篇
  1999年   4篇
  1998年   15篇
  1997年   10篇
  1996年   11篇
  1995年   9篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   1篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1969年   1篇
  1944年   1篇
排序方式: 共有236条查询结果,搜索用时 125 毫秒
41.
42.
43.
Two vaccines, based on formalin-killed whole cells of toxigenic Pasteurella multocida type D and Bordetella bronchiseptica combined with a partially toxoided cell extract of P multocida, were prepared with Freund's incomplete adjuvant (vaccine 1) or by alum precipitation (vaccine 2). Each was tested for safety and efficacy in reducing the severity of nasal turbinate atrophy and improving the growth rate of pigs in three Western Australian commercial piggeries with endemic atrophic rhinitis. In safety experiments with vaccine 1, no adverse clinical effects were observed in vaccinated sows or their progeny. Piglets receiving vaccine 2 showed no injection site abnormalities, pyrexia or turbinate atrophy. In field trials, vaccine 1 significantly reduced the prevalence of moderate to severe nasal turbinate atrophy (Done score 3 to 5) when used in two piggeries (A and B). Progeny from vaccinated sows in piggery B also grew significantly faster than controls. When vaccine 2 was used in piggery A at a later date and in another piggery (C), growth rate was not improved in either piggery and the prevalence of moderate to severe turbinate atrophy was reduced only in piggery C.  相似文献   
44.
No excess of homozygosity at loci used for DNA fingerprinting   总被引:22,自引:0,他引:22  
Variable number of tandem repeat (VNTR) loci are extremely valuable for the forensic technique known as DNA fingerprinting because of their hypervariability. Nevertheless, the use of these loci in forensics has been controversial. One criticism of DNA fingerprinting is that the VNTR loci used for the "fingerprints" violate the assumption of Hardy-Weinberg equilibrium (H-W), making it difficult to calculate the probability of observing a genotype in the population. If one can assume H-W, the probability of observing the pair of alleles constituting an individual's genotype can be calculated by taking the product of the alleles' frequencies in the population and multiplying by two if the alleles are different. The evidence cited against assuming H-W is homozygote excess, which is presumed to be caused by an undetected mixture of two or more populations with limited interpopulational mating and distinct allele frequencies. For most VNTR loci, measurement error makes it impossible to test these claims by standard methods. The Lifecodes database of three VNTR loci used for forensics was used to show that the claimed excess of homozygotes is not necessarily real because many heterozygotes with similar allele sizes are misclassified as homozygotes. A simple test of H-W that takes such misclassifications into account was developed to test for an overall excess or dearth of heterozygotes in the sample (the complement of homozygote dearth or excess). The application of this test to the Lifecodes database revealed that there was no consistent evidence of violation of H-W for the Caucasian, black, or Hispanic populations.  相似文献   
45.
With the commercial release in Australia in 2004 of a vaccine against feline immunodeficiency virus (FIV; Fel‐O‐Vax FIV®), the landscape for FIV diagnostics shifted substantially. Point‐of‐care (PoC) antibody detection kits, which had been the mainstay for diagnosing FIV infection since the early 1990s, were no longer considered accurate to use in FIV‐vaccinated cats, because of the production of vaccine‐induced antibodies that were considered indistinguishable from those produced in natural FIV infections. Consequently, attention shifted to alternative diagnostic methods such as nucleic acid detection. However, over the past 5 years we have published a series of studies emphasising that FIV PoC test kits vary in their methodology, resulting in differing accuracy in FIV‐vaccinated cats. Importantly, we demonstrated that two commercially available FIV antibody test kits (Witness? and Anigen Rapid?) were able to accurately distinguish between FIV‐vaccinated and FIV‐infected cats, concluding that testing with either kit offers an alternative to PCR testing. This review summarises pertinent findings from our work published in a variety of peer‐reviewed research journals to inform veterinarians (particularly veterinarians in Australia, New Zealand and Japan, where the FIV vaccine is currently commercially available) about how the approach to the diagnosis of FIV infection has shifted. Included in this review is our work investigating the performance of three commercially available FIV PoC test kits in FIV‐vaccinated cats and our recommendations for the diagnosis of FIV infection; the effect of primary FIV vaccination (three FIV vaccines, 4 weeks apart) on PoC test kit performance; our recommendations regarding annual testing of FIV‐vaccinated cats to detect ‘vaccine breakthroughs’; and the potential off‐label use of saliva for the diagnosis of FIV infection using some FIV PoC test kits. We also investigated the accuracy of the same three brands of test kits for feline leukaemia virus (FeLV) diagnosis, using both blood and saliva as diagnostic specimens. Based on these results, we discuss our recommendations for confirmatory testing when veterinarians are presented with a positive FeLV PoC test kit result. Finally, we conclude with our results from the largest and most recent FIV and FeLV seroprevalence study conducted in Australia to date.  相似文献   
46.
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号