首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   12篇
林业   24篇
农学   5篇
基础科学   2篇
  70篇
综合类   4篇
农作物   35篇
水产渔业   35篇
畜牧兽医   37篇
园艺   8篇
植物保护   22篇
  2023年   1篇
  2022年   7篇
  2021年   12篇
  2020年   10篇
  2019年   20篇
  2018年   18篇
  2017年   25篇
  2016年   16篇
  2015年   11篇
  2014年   11篇
  2013年   38篇
  2012年   14篇
  2011年   13篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
  1973年   2篇
排序方式: 共有242条查询结果,搜索用时 31 毫秒
21.
In the present study, common carp (Cyprinus carpio) were fed with diet supplemented with 0% (M0) or 0.5% (M0.5) myrcene for 6 week and exposed to ambient copper (0.2 mg/L) for further 2 weeks. Gene expressions of superoxide dismutase (sod), catalase (cat), glutathione peroxidase (gpx), glutathione reductase (gr) and glutathione S‐transferase (gst) were assayed in the fish brain and kidney, and thiobarbituric reactive substance (TBARS) levels were determined in blood plasma. The results showed that there was no significant difference in TBARS levels between the M0 and M0.5 treatments, before the copper exposure; however, the M0 had significantly higher TBARS levels compared to the M0.5, after the copper exposure. The antioxidant genes showed different patterns in the fish brain and kidney. The genes were up‐regulated in the fish brain by dietary myrcene and copper exposure. However, in the fish kidney, the M0.5 treatment showed no change in sod, cat, gpx before and after the copper exposure. The results suggest that myrcene is capable to induce antioxidant enzymes that prepare the fish for a further oxidative condition (i.e. copper exposure). Dietary myrcene at 0.5% level is suggested for common carp before treatment with copper sulphate.  相似文献   
22.
Fruit of two apricot cultivars 'Bagheri' and 'Asgarabadi' were treated with putrescine (Put) or spermidine (Spd) at 1 mM and then were stored at 1 °C for 21 days. Fruit were sampled weekly and stored 2 days at 20 °C for shelf-life study. The treatments reduced ethylene production and maintained the firmness and color of the fruit. Peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and polyphenol oxidase (PPO) activities and total phenol (TP) concentrations were measured during storage. Both cultivars showed chilling injury (CI) incidence, and the severity in control fruit was higher than either Put or Spd treatments. CI incidence in Spd-treated fruit was lower than that of Put-treated fruit. Polyamine (PA) treatment generally increased antioxidant enzyme activity of fruit during storage. PA treatments may help maintain the quality of apricot fruit during storage by inhibiting ripening and decreasing CI incidence.  相似文献   
23.
Candidatus Phytoplasma australasia’ causes important damages to the Egyptian vegetable crop production. A prerequisite for controlling the different diseases it causes to eggplant, tomato and squash, is to trace its propagation pathways. To allow the differentiation of ‘Ca. P. australasia’ strains, a multilocus sequence analysis protocol was developed. Four conserved phytoplama genes namely tuf, secY, dnaK and dppA, were selected among the CDS of a ‘Ca. P. aurantifolia’ genome draft. The corresponding genes were PCR amplified from tomato, eggplant and squash collected in 2010 from the governorates Sharkia, Elmynia and Beni sueif, as well as from Catharanthus roseus periwinkles collected in 2013 from Kafrelsheikh governorate. Sequence comparisons showed no diversity among the Egyptian isolates of Ca. P. australasia’ that also constitute a distinct cluster within the 16SrII-D taxonomic subgroup. This low diversity supports a common epidemiology for the different diseases affecting vegetable crops and periwinkle in Egypt and suggests that future investigations on insect vector should focus on polyphagous leafhoppers.  相似文献   
24.
Journal of Plant Diseases and Protection - Bacterial blight of common bean caused by Xanthomonas axonopodis pv. phaseoli (Xap) is one of the most devastating diseases and causes serious yield...  相似文献   
25.
Ornamental kale (Brassica oleracea var. Acephala) is usually planted from early autumn until late winter. Since most of the plants used for phytoremediation cannot be grown during this time, kale can be a suitable option for phytoremediation and utilized during autumn and winter in urban landscape, especially in metropolitan areas where high levels of cadmium (Cd) and lead (Pb) pollutions exist. Kale growth in saline soil at different growth stages (germination and vegetative growth stages) was studied in this investigation. A factorial experiment based on completely randomized design (CRD) with four replications was used in this study. Treatments included three levels of sodium chloride (NaCl) (0, 30, and 60 mg/kg), four levels of Cd (0, 4, 8, and 16 mg/kg), and four levels of Pb (0, 1, 5, and 10 mg/kg). Results indicated that increase in Cd and Pb concentrations in the soil decreased fresh and dry weights of the plants. The results of the various growth stages revealed that under salinity stress, kale plants were able to absorb more Pb than Cd and effectively remediate Pb in polluted and saline lands. Cd accumulation in control treatment was 6.2% more than that in the saline treatments, whereas, Pb accumulation in the highest NaCl level, 60 mg/kg salinity treatment was 7.64% more than that of the control condition. Also, proline content of the plants was significantly increased under Cd and Pb stress. From the results of this study, it was concluded that using kale plant is recommended for phytoremediation of saline soils with 10 and 16 mg/kg Pb and Cd contents, respectively.  相似文献   
26.
This work was carried out to study the relationship between fish weight and natural food selectivity of Nile tilapia, Oreochromis niloticus (Linnaeus) reared in earthen ponds without supplementary diet and to guide the adaptation of feeding and fertilization strategies. Fish were stocked (1.5 fish/m2) in four fertilized earthen ponds (0.1 ha) for 6 months. Fifty fish were sampled monthly to estimate individual total weight and length and evaluate stomach contents. Fish specimens were categorized into different weight classes: <25 g, 25–50 g, 50–75 g, 75–100 g, and 100–125 g. Overall, the 50–75 g weight class had the highest degree of stomach fullness. The intestinal length-fish length ratio was similar across all fish weights, ranging from 2.9–3.4. Likewise, the composition of food items found in fish stomach was ranked as phytoplankton > detritus > zooplankton. Phytoplankton contribution to gut content increased with increasing fish weight, while detritus and zooplankton contribution decreased. Zooplankton never exceeded 1% of total stomach contents. Cyanobacteria, Chlorophyceae, Bacillariophyceae and Euglenophyceae mostly represented the phytoplankton. Bacillariophyceae dominated the phytoplanktonic portion of stomach contents at small fish size (<75 g/fish), while Chlorophyceae is the dominant group at large fish size (> 75 g/fish). Fish could select Cyanobacteria and Euglenophyceae at all fish weights, meanwhile Chlorophyceae and Bacillariophyceae were eaten with slight selectivity at larger weights..  相似文献   
27.
Quantitative and qualitative analyses of bacterial flora associated with pond water, gills, and intestine of polycultured healthy common carp (Cyprinus carpio) and African catfish (Clarias gariepinus) were carried out and identified to species level where possible. Total viable bacterial counts in the pond water ranged from 9.2?±?5.5?×?103 to 6.6?±?5.1?×?104 colony-forming units (cfu)/mL; in the gill filaments of carp and catfish, 3.3?±?3.8?×?106 to 7.9?±?5.6?×?106 and 1.1?±?4.6?×?105 to 2.3?±?5.2?×?106 cfu/g, respectively; and in the intestine of carp and catfish, 1.4?±?2.9?×?1010 to 1.7?±?6.0?×?1011 and 2.7?±?3.4?×?1010 to 1.0?±?4.5?×?1011 cfu/g, respectively. Gram-negative rod-shaped bacteria dominated the populations: 90% in carp, 89% in catfish, 80% in water, and 86% in the total populations. Altogether, 14 bacterial species of 10 genera were identified in total populations. Pond water bacteria had a reflection on the bacterial composition of the gills and intestine of carp and catfish. Aeromonas hydrophila, Shewanella putrefaciens, Vibrio cholerae, Staphylococcus sp., and Vibrio vulnificus appeared as the common bacteria in the populations, where the first three were highly significantly abundant (P?<?0.0001). Moreover, A. hydrophila was the most significantly dominant bacteria (32%; P?<?0.005) among the total populations. Pantoea sp. and Pasteurella pneumotropica were present only in carp and catfish, respectively, but Corynebacterium urealyticum and Micrococcus sp. were present only in pond water.  相似文献   
28.
29.
30.
The effect of soil pH on solubility of the potentially toxic trace elements (PTEs) [cadmium (Cd), copper (Cu), nickel (Ni), zinc (Zn)] was assessed using two native and spiked calcareous soils. Multiple PTEs solutions were added to soils and equilibrated (aged) for 40 days. Then, PTEs solubility was measured at different pH level (1–3 units below and above the pH of native soils). In native soils, all PTEs displayed a V-shaped pH-dependent solubility pattern with important releases at pH 4 and 10 (native soil 1) and 5 and 11 (native soil 2). In spiked soils, the general tendency for the pH where solubility started was in the order Cd > Ni > Zn > Cu. Solubility of added trace elements increased with a decrease in pH. Solubility of PTEs occurred at a lower pH in the soil with a higher carbonate content than the other soil (both native and spiked). In order to predict the effect of soil pH on solubility of PTEs, surface complexation and ions exchange models of PHREEQC program were used. The model simulated the PTEs solubility in soils very well. Comparison of experimental and simulated data indicated that ions exchange and surface complexation were the main mechanisms for predicting PTEs solubility in soils. Environmental implications concerning PTEs mobility might be derived from these findings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号