首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   447篇
  免费   29篇
林业   31篇
农学   22篇
  130篇
综合类   19篇
农作物   24篇
水产渔业   11篇
畜牧兽医   192篇
园艺   11篇
植物保护   36篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   18篇
  2020年   22篇
  2019年   15篇
  2018年   14篇
  2017年   22篇
  2016年   23篇
  2015年   24篇
  2014年   21篇
  2013年   41篇
  2012年   43篇
  2011年   28篇
  2010年   25篇
  2009年   15篇
  2008年   31篇
  2007年   24篇
  2006年   21篇
  2005年   17篇
  2004年   12篇
  2003年   10篇
  2002年   13篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1988年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有476条查询结果,搜索用时 15 毫秒
471.
Plant Foods for Human Nutrition - The composition of garlic (Allium sativum L.) may vary among cultivars and, moreover, change over time, thereby affecting both biological activity and flavour....  相似文献   
472.
Landscape Ecology - Small forest fragments are often the most abundant type of semi-natural habitat in intensive agricultural landscapes. Wild pollinators can use these forest patches as nesting or...  相似文献   
473.
Background : Nepal's traditional rice–wheat rotation systems are subject to continuing changes. Changing consumer demand currently drives a replacement of wheat by high‐value vegetables during the dry season, while emerging water shortages lead to a substitution of rice by maize in the wet season. Hence, associated changes in soil aeration status and shifting conditions of soil nutrient supply to match crop nutrient demand are expected to increase the requirements for the principle limiting micro‐nutrients such as boron (B) and zinc (Zn). Aim: Our aim was to investigate the changes in B and Zn availability as well as crop yields and nutrient uptake after system shifts from rice to maize and from wheat to vegetables. Method : We analyzed the B and Zn availability in rice‐ and maize‐based systems as well as crop yields and the nutrient uptake by wheat, cauliflower, and tomato during the dry season in Nepal. Plants were grown at two field sites (midhills vs. lowland) and under greenhouse conditions using soils from the field sites. Results : A change from irrigated rice to maize reduced soil C and N contents with resulting decreases in dry season crop yields. Low soil Zn after rice cultivation led to shortage in Zn uptake by vegetables in both greenhouse and field experiments. The shift from wheat to vegetables increased the demand for B and to a lesser extent for Zn, and consequently vegetables showed visual symptoms of B deficiency. Boron concentrations in dry biomass were below the critical limits with < 10 mg B kg?1 in wheat, < 21 mg B kg?1 in cauliflower, and < 23 mg B kg?1 in tomato. Conclusions: Soils in larger parts of Nepal are low in available B and that the ongoing system shifts increase in the demand for B and Zn in the currently emerging and more diversified production systems.  相似文献   
474.
Sun  Xiaojie  Cai  Peng  Sørensen  Søren J.  Mortimer  Monika  Gao  Chunhui  Huang  Qiaoyun  Wang  Yiming  Lin  Xiangui  Wu  Yichao  Zhu  Di  Chen  Ruirui 《Journal of Soils and Sediments》2020,20(3):1494-1501
Purpose

Bacterial cooperation and competition in biofilms are being recognized as important factors in regulating structure and function of microbial communities. However, knowledge about soil bacterial interactions in biofilms and how these may be influenced by different fertilization practices is still limited. This study aims to investigate interspecific interactions in biofilms and the effects of fertilization practices on these interactions.

Materials and methods

We assessed bacterial interactions according to a classification criterion proposed recently via comparing biomass of single-species biofilms with dual-species biofilms. Biofilm biomass was measured by crystal violet staining using the modified Calgary biofilm device.

Results and discussion

Increased biofilm formation was detected in 67% of co-cultures that were composed of strains isolated from unfertilized soil, indicating a high prevalence of cooperation among the strains in natural soil. In contrast, decreased biofilm formation was detected in 74% of co-cultures that contained strains isolated from soil receiving chemical fertilizer. Interestingly, combinations of bacterial isolates from soils amended with chemical fertilizer in combination with composted chicken manure or mushroom residues showed higher level of synergism and biofilm induction in dual-species biofilms than the strains from chemically fertilized soils, suggesting integrated fertilization with composted chicken manure or mushroom residues may help maintain the native microbial interaction network dominated by synergistic interactions.

Conclusions

Together, these findings indicate that social interactions, required for biofilm formation, among soil bacteria are affected by fertilization practices. Cooperation is dominant in dual-species biofilms in unfertilized soil. Organic manure could mitigate the negative impacts on bacterial social interactions caused by chemical fertilizers.

  相似文献   
475.
For a better understanding of the physiological background of microspore embryogenesis (ME), the protein profile was analyzed in four winter triticale DH lines, which show extremely different embryogenic potential. The analysis were conducted with anthers at the phase of development optimal for ME induction and then after low temperature (LT, 3 weeks at 4 °C) ME-inducing tillers treatment. The sub-proteome of anthers was mapped by two-dimensional gel electrophoresis (2-DE). The protein species significantly more abundant (at least 2-fold) in responsive DH lines after LT treatment were chosen for identification by MALDI-TOF/TOF analysis. In total, 31 protein species were successfully identified as involved in the determination of microspore competence, stress response and in the regulation of ME induction. Microspore competence required sufficient energy supply and efficient system of cell protection that determine survival under prolonged LT stress treatment. LT stress was associated with increased accumulation of proteins typical for cell defence against oxidative stress (e.g., l-ascorbate peroxidase), chaperons (e.g., HSP70) and other enzymes/factors ensuring protein biosynthesis, stability and active cell divisions. Also here, effective cell defence required undisturbed energy supply. Among proteins that accumulated differentially in accordance with microspore embryogenic potential again the most important role seems to be played by the enzymes ensuring energy production and determining ability of plant stress adaptation. Two protein species (enolase, 12S storage protein), proposed earlier as candidates for markers of embryogenesis in other in vitro plant culture systems confirmed their utility for triticale anther cultures.  相似文献   
476.
Management of heavy metal-contaminated soil under drought and other harsh hydrological conditions is critical for protecting soil ecosystem services. In this study, we examined the effect of pig manure digestate-derived biochar as a soil amendment (15 t ha−1) with N fertilizer (180 kg ha−1) on soil and plant heavy metal levels and nutrient availability under various moisture regimes (optimal moisture ~15%, drought condition ≤5%, and flooded condition ≥35% wt.). It was observed that biochar applications significantly decreased heavy metals in the spring wheat plants, lowering Cr by 90%, Ni by 50%, Cd by 9% and Pb by 34% compared to non-biochar (control) treatments. However, the pig digestate-derived biochar increased heavy metals in soil under all moisture regimes, increasing soil Cr by 21%, Ni by 43%, Cu by 55%, Zn by 70%, and Pb by 12%. The availability of macroelements also increased with the biochar applications under the optimum moisture regimes in both soil and plants, increasing Mg2+ by 11%, P by 4%, K+ by 50%, and Ca2+ by 56% in the soil, and Mg2+ by 13%, P by 69%, K+ by 29, and Ca2+ by 39% in plants. Biochar addition also improved chlorophyll fluorescence (CF) levels in the crop for the entire season (12th to 62nd day) and the aboveground crop biomass and dry matter contents both increased. Consequently, the use of pig manure digestate-derived biochar with N fertilizer under normal moisture conditions was able to reduce heavy metal availability to plants and thus could be used in contaminated soils to maintain better crop growth and development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号