首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   9篇
林业   25篇
农学   7篇
基础科学   1篇
  68篇
综合类   4篇
农作物   23篇
水产渔业   24篇
畜牧兽医   141篇
园艺   4篇
植物保护   14篇
  2023年   5篇
  2022年   5篇
  2021年   17篇
  2020年   16篇
  2019年   13篇
  2018年   13篇
  2017年   10篇
  2016年   7篇
  2015年   8篇
  2014年   17篇
  2013年   14篇
  2012年   31篇
  2011年   32篇
  2010年   11篇
  2009年   17篇
  2008年   23篇
  2007年   11篇
  2006年   13篇
  2005年   17篇
  2004年   12篇
  2003年   9篇
  2002年   7篇
  2001年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有311条查询结果,搜索用时 234 毫秒
101.

Purpose

The mineralization/immobilization of nutrients from the crop residues is correlated with the quality of the plant material and carbon compartments in the recalcitrant and labile soil fractions. The objective of this study was to correlate the quality and quantity of crop residues incubated in the soil with carbon compartments and CO2-C emission, using multivariate analysis.

Materials and methods

The experiment was conducted in factorial 4?+?2?+?5 with three replicates, referring to three types of residues (control, sugarcane, Brachiaria, and soybean), and two contributions of the crop residues in constant rate, CR (10 Mg ha?1 residue), and agronomic rate, AR (20, 8, and 5 Mg ha?1 residue, respectively, for sugarcane, soybean, and Brachiaria), evaluated five times (1, 3, 6, 12, and 48 days after incubation). At each time, we determined the CO2-C emission, nitrogen and organic carbon in the soil, and the residues. In addition, the microbial biomass and water-soluble, labile, and humic substance carbons fractionated into fulvic acids, humic acids and humin were quantified.

Results and discussion

Higher CO2-C emissions occurred in the soil with added residue ranging from 0.5 to 1.1 g CO2-C m?2 h?1 in the first 6 days of incubation, and there was a positive correlation with the less labile organic soil fractions as well as residue type. In the final period, after 12 days of soil incubation, there was a higher relation of CO2-C emission with carbon humin. The sugarcane and soybean residue (20 Mg ha?1) promoted higher CO2-C emission and the reduction of carbon residue. The addition of residue contributed to an 82.32 % increase in the emission of CO2-C, being more significant in the residue with higher nitrogen availability.

Conclusions

This study shows that the quality and quantity of residue added to soil affects the carbon sequestration and CO2-C emission. In the first 6 days of incubation, there was a higher CO2-C emission ratio which correlates with the less stable soil carbon compartments as well as residue. In the final period of incubation, there is no effect of quality and quantity of residue added to soil on the CO2-C emission.
  相似文献   
102.
Tropical Animal Health and Production - The early pregnancy diagnosis allows optimizing production and timely management correction, with a greater reproductive output of livestock. The Idexx Rapid...  相似文献   
103.
Biosynthesis of strawberry aroma compounds through amino acid metabolism   总被引:5,自引:0,他引:5  
The fate of amino acids in relation to aroma biogenesis was studied in strawberries using the in vitro growth approach. This fruit presented differences in the level of metabolization for different amino acids. Incubations of strawberries with L-isoleucine gave rise to an increase of fourteen compounds in this fruit aroma, either not detected previously or constituents of strawberry aroma. However, L-valine incubations did not provide a significant change in this fruit aroma. Strawberry feeding with L-isoleucine resulted in a 7-fold increase in the sum of 2-methylbutanoate esters, and a double production of 2-methylbutyl esters compared to those of control fruits. Around 94% of the ester increase corresponded to 2-methylbutanoates, with ethyl 2-methylbutanoate being the most representative compound (92%). On the other hand, among the 2-methylbutyl esters, comprising around 6% of total aroma volatiles increase, 2-methylbutyl acetate was the major compound (95%) arising from L-isoleucine strawberry feeding. The role of enzymatic activities within the amino acid metabolic pathway in strawberry fruits is discussed.  相似文献   
104.
105.
106.
The aim of this work was to determine the optimum values for the biodegradation process of six abiotic factors considered very influential in this process. The optimisation of a polycyclic aromatic hydrocarbon (naphthalene, phenanthrene and anthracene) biodegradation process was carried out with a degrading bacterial consortium C2PL05. The optimised factors were the molar ratio of carbon/nitrogen/phosphorus (C/N/P), the nitrogen source, the iron source, the iron concentration, the pH and the carbon source. Each factor was optimised applying three different treatments during 168 h, analysing cell density by spectrophotometric absorbance at 600 nm and PAH depletion by HPLC. To determine the optimum values of the factors, an analysis of variance was performed using the cell density increments and biotic degradation constants, calculated for each treatment. The most effective values of each factor were: a C/N/P molar ratio of 100:21:16, NaNO3 as nitrogen source, Fe2(SO4)3 as iron source using a concentration of 0.1 mmol l?1, a pH of 7.0 and a mixture of glucose and PAHs as carbon source. Therefore, high concentrations of nutrients and soluble forms of nitrogen and iron at neutral pH favour the biodegradation. Also, the addition of glucose to PAHs as carbon source increased the number of total microorganism and enhanced PAH biodegradation due to the augmentation of PAH degrader microorganisms. It is also important to underline that the statistical treatment of data and the combined study of the increments of the cell density and the biotic biodegradation constant have facilitated the accurate interpretation of the optimisation results. For an optimum bioremediation process, it is very important to perform these previous bioassays to decrease the process development time and, therefore, the costs.  相似文献   
107.
This experimental controlled study was performed to evaluate the composition of autologous processed plasma (APP), and the effects of APP intra-articular injection into healthy equine metacarpophalangeal joints. The effects on joints were analysed with a short-phase protocol and a prolonged-phase protocol using saline-injected joints as controls. For the short protocol, horses received one intra-articular APP injection. Synovial fluid samples were collected prior to the injection and 3, 6, 24, 48, and 16 h after treatment. For the prolonged protocol, the joints received three weekly injections of APP, and samples were collected at 0, 7, 14, 21, and 28 days before APP administration. IL1-ra level was found to be increased in APP compared to plasma. Upon intra-articular administration of APP, transient (up to 24 h) increases in white blood cell (WBC) counts along with elevated protein and prostaglandin E2 (PGE2) concentrations were observed in the treated joints. Over the 28-day observation period, APP did not elicit changes relative to baseline levels, but WBC counts, PGE2 and chondroitin sulphate concentrations were lower than those found in the control. In conclusion, APP intra-articular injection induced a mild and transitory inflammatory response but no inflammation reaction was observed over a longer period of treatment and observation.  相似文献   
108.
Free-air carbon dioxide (CO2) enrichment (FACE) experiments provide an opportunity to test models of heat and water flow under novel, controlled situations and eventually allow use of these models for hypothesis evaluation. This study assesses whether the United States Department of Agriculture SHAW (Simultaneous Heat and Water) numerical model of vertical one-dimensional soil water flow across the soil-plant-atmosphere continuum is able to adequately represent and explain the effects of increasing atmospheric CO2 on soil moisture dynamics in temperate grasslands. Observations in a FACE experiment, the BioCON (Biodiversity, CO2, and Nitrogen) experiment, in Minnesota, USA, were compared with results of vertical soil moisture distribution. Three scenarios represented by different plots were assessed: bare, vegetated with ambient CO2, and similarly vegetated with high CO2. From the simulations, the bare plot soil was generally the wettest, followed by a drier high-CO2 vegetated plot, and the ambient CO2 plot was the driest. The SHAW simulations adequately reproduced the expected behavior and showed that vegetation and atmospheric CO2 concentration significantly affected soil moisture dynamics. The differences in modeled soil moisture amongst the plots were largely due to transpiration, which was low with high CO2. However, the modeled soil moisture only modestly reproduced the observations. Thus, while SHAW is able to replicate and help broadly explain soil moisture dynamics in a FACE experiment, its application for point- and time-specific simulations of soil moisture needs further scrutiny. The typical design of a FACE experiment makes the experimental observations challenging to model with a one-dimensional distributed model. In addition, FACE instrumentation and monitoring will need improvement in order to be a useful platform for robust model testing. Only after this can we recommend that models such as SHAW are adequate for process interpretation of datasets from FACE experiments or for hypothesis testing.  相似文献   
109.
Plant Foods for Human Nutrition - Prickly pear cactus fruit peels have been seen as organic waste. This study explored the effect of supplemental irrigation during fruit growth of ‘Roja...  相似文献   
110.
The ability of a degraded soil to respond to successive additions of a toxic organic waste (olive-mill solid waste) and its vermicompost was studied in a controlled incubation experiment for 32 weeks. Hydrolytic enzyme activities (phosphatase, β-glucosidase), oxidoreductase activities (dehydrogenase, o-diphenol oxidase) and indole acetic acid production, were used as measures of soil perturbation. No microbial activity, indicated by the total lack of dehydrogenase activity, was detected when the olive-mill solid waste was added to the soil. However, after 16 weeks, the activity returned to the original soil levels (1.35 μg INTF g−1 h−1). The addition of vermicomposted olive-mill solid waste increased the original soil dehydrogenase activity by five-fold, indicating a loss of toxicity of the waste during the vermicomposting process; the activity remained high throughout the experiment. At week 21, a second addition of olive solid waste, was made to both olive waste and vermicompost-amended soils, when the soil originally amended with olive waste had reached the activity measured in soil amended with vermicompost. Dehydrogenase activity recovered immediately, reaching levels up to seven-fold higher than the background levels of the soil. The ability of soil to respond to a toxic waste clearly differed after a period of exposure to the waste. The faster response was probably related to the increased pool of stabilized organic matter present in soil, arising from the stabilization of added olive waste in the soil or through the amended vermicompost. The amplitude (period of recovery to the initial state after disturbance) and the elasticity (speed of recovery) of the soil could also be monitored by o-diphenol oxidase and β-glucosidase activities. However, indole-3-acetic acid production proved to be a useful measure of perturbation only following the second addition of the olive waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号