首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   80篇
林业   15篇
农学   13篇
基础科学   2篇
  85篇
综合类   115篇
农作物   72篇
水产渔业   26篇
畜牧兽医   505篇
园艺   14篇
植物保护   49篇
  2021年   11篇
  2020年   16篇
  2019年   19篇
  2018年   23篇
  2017年   12篇
  2016年   16篇
  2015年   14篇
  2014年   16篇
  2013年   35篇
  2012年   27篇
  2011年   22篇
  2010年   33篇
  2009年   18篇
  2008年   30篇
  2007年   28篇
  2006年   24篇
  2005年   20篇
  2004年   23篇
  2003年   29篇
  2002年   31篇
  2001年   26篇
  2000年   32篇
  1999年   28篇
  1998年   18篇
  1997年   11篇
  1996年   6篇
  1993年   8篇
  1992年   15篇
  1991年   17篇
  1990年   14篇
  1988年   15篇
  1987年   14篇
  1986年   9篇
  1985年   7篇
  1984年   9篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1975年   5篇
  1974年   9篇
  1973年   7篇
  1972年   5篇
  1971年   6篇
  1970年   7篇
  1945年   5篇
  1943年   6篇
  1937年   6篇
  1935年   7篇
  1906年   5篇
  1893年   5篇
排序方式: 共有896条查询结果,搜索用时 15 毫秒
891.
Since the beginning of the 21st century, electronic monitoring (EM) has emerged as a cost‐efficient supplement to existing catch monitoring programmes in fisheries. An EM system consists of various activity sensors and cameras positioned on vessels to remotely record fishing activity and catches. The first objective of this review was to describe the state of play of EM in fisheries worldwide and to present the insights gained on this technology based on 100 EM trials and 12 fully implemented programmes. Despite its advantages, and its global use for monitoring, progresses in implementation in some important fishing regions are slow. Within this context, the second objective was to discuss more specifically the European experiences gained through 16 trials. Findings show that the three major benefits of EM were as follows: (a) cost‐efficiency, (b) the potential to provide more representative coverage of the fleet than any observer programme and (c) the enhanced registration of fishing activity and location. Electronic monitoring can incentivize better compliance and discard reduction, but the fishing managers and industry are often reluctant to its uptake. Improved understanding of the fisher's concerns, for example intrusion of privacy, liability and costs, and better exploration of EM benefits, for example increased traceability, sustainability claims and market access, may enhance implementation on a larger scale. In conclusion, EM as a monitoring tool embodies various solid strengths that are not diminished by its weaknesses. Electronic monitoring has the opportunity to be a powerful tool in the future monitoring of fisheries, particularly when integrated within existing monitoring programmes.  相似文献   
892.
Models of human dimensions of fisheries are important to understanding and predicting how fishing industries respond to changes in marine ecosystems and management institutions. Advances in computation have made it possible to construct agent‐based models (ABMs)—which explicitly describe the behaviour of individual people, firms or vessels in order to understand and predict their aggregate behaviours. ABMs are widely used for both academic and applied purposes in many settings including finance, urban planning and the military, but are not yet mainstream in fisheries science and management, despite a growing literature. ABMs are well suited to understanding emergent consequences of fisher interactions, heterogeneity and bounded rationality, especially in complex ecological, social and institutional contexts. For these reasons, we argue that ABMs of human behaviour can contribute significantly to human dimensions of fisheries in three areas: (a) understanding interactions between multiple management institutions; (b) incorporating cognitive and behavioural sciences into fisheries science and practice; and (c) understanding and projecting the social consequences of management institutions. We provide simple examples illustrating the potential for ABMs in each of these areas, using conceptual (“toy”) versions of the POSEIDON model. We argue that salient strategic advances in these areas could pave the way for increased tactical use of ABMs in fishery management settings. We review common ABM development and application challenges, with the aim of providing guidance to beginning ABM developers and users studying human dimensions of fisheries.  相似文献   
893.
We studied the effects of a biochar made from fast pyrolysis of switchgrass on four soil enzymes (β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase) to determine if biochar would consistently modify soil biological activities. Thus, we conducted a series of enzyme assays on biochar-amended soils. Inconsistent results from enzyme assays of char-amended soils suggested that biochar had variable effects on soil enzyme activities, thus we conducted a second experiment to determine if biochar reacts predictably with either enzyme or substrate in in vitro reactions. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of 3 different soils, fluorescence-based assays revealed some increased enzyme activities (up to 7-fold for one measure of β-glucosidase in a shrub-steppe soil) and some decreased activities (one-fifth of the unamended control for lipase measured in the same shrub-steppe soil), compared to non-amended soil. In an effort understand the varied effects, purified enzymes or substrates were briefly exposed to biochar and then assayed. In contrast to the soil assays, except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the enzymes, suggesting that sorption reactions between substrate and biochar impeded enzyme function. Our findings indicate that fluorometric assays are more robust to, or account for, this sorption better than the colorimetric assays used herein. The activity of purified β-N-acetylglucosaminidase increased 50-75% following biochar exposure, suggesting a chemical enhancement of enzyme function. In some cases, biochar stimulates soil enzyme activities, to a much greater degree than soil assays would indicate, given that substrate reactivity can be impeded by biochar exposure. We conclude that the effects of biochar on enzyme activities in soils are highly variable; these effects are likely associated with reactions between biochar and the target substrate.  相似文献   
894.
895.
One waxy and three regular yellow dent corn hybrids were wet milled by using two scales of laboratory procedures (modified 100-g and 1-kg) and a pilot-plant procedure (10-kg). The modified 100-g and 1-kg laboratory procedures gave similar yields of wet-milling fractions. Starch yields and recoveries were significantly lower for the pilot-plant procedure, whereas gluten and fiber yields were greater because of their high contents of unrecovered starch. Protein contents of the starches obtained by all three procedures were within commercially acceptable limits (<0.50% db for normal dent corn and <0.30% for waxy corn). Rankings for starch yields and starch recoveries for the four hybrids, having very different physical and compositional properties, were the same for all three procedures. The harder the grain, the lower the yield and recovery of starch. Least significant differences (P < 0.05) for starch yield were 0.8% for the modified 100-g procedure, 1.2% for the 1-kg procedure, and 2.0% for the pilot-plant procedure.  相似文献   
896.
A series of cross‐linked (0, 0.014, 0.018, 0.024, and 0.028% POCl3, dry starch basis) hydroxypropylated (8%) corn starches were extruded using a Leistritz micro‐18 co‐rotating extruder. Process variables included moisture, barrel temperature, and screw design. Differential scanning calorimetry and X‐ray diffraction studies showed the level of starch crystallinity decreased with increasing severity of extrusion conditions. Pasting properties of the extruded starches were examined using a Rapid Visco Analyser. Pasting profiles of starches extruded at different conditions displayed different hot paste viscosity and final viscosity. Increasing starch moisture content during extrusion and level of cross‐linking increased starch viscosity (P < 0.0001), whereas increasing extrusion temperature and shear decreased starch viscosity (P < 0.0001). Interactions were found between level of cross‐linking and screw design and between extrusion temperature and starch moisture content (P < 0.0001).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号