首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   7篇
  国内免费   36篇
农学   1篇
基础科学   42篇
  34篇
综合类   26篇
园艺   6篇
植物保护   9篇
  2024年   1篇
  2023年   9篇
  2022年   7篇
  2021年   5篇
  2020年   6篇
  2019年   15篇
  2018年   12篇
  2017年   6篇
  2016年   16篇
  2015年   5篇
  2014年   5篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   4篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
排序方式: 共有118条查询结果,搜索用时 328 毫秒
81.
为探索土壤含盐量及施肥量对土壤溶液养分供给的影响,以土壤电导率为研究对象,通过设置3种土壤含盐量、4种设计含水率和4种浓度K2SO4溶液共48种工况下土柱试验(S1~S48),采用5TE传感器连续观测土壤含水量和电导率,分析土壤含盐量、施肥浓度对不同含水率时土壤电导率的影响。结果表明:土壤含盐量较高时,高盐度会影响介电常数ε和含水率θ的关系,造成5TE测得含水率偏高;定义盐度指数为土壤电导率σb随体积含水率θ的变化率,可通过盐度指数Xs修正含水率θ,修正后含水率的精度可达±2%;当土壤被电导率为0 mS/cm的溶液润湿时(未施肥),初始盐度指数Xsi并不为零,这说明土壤自身会溶解出来一部分养分,且当土壤养分充足时,不可忽略土壤自身本底值对电导率的贡献。因此,在施肥过程中,应充分考虑土壤的含盐量差异,进行合理施肥,避免因盲目施肥造成土壤养分利用率低下以及肥料的浪费。  相似文献   
82.
田间便携式短喉槽的数值模拟   总被引:1,自引:1,他引:0  
为进一步研究田间便携式短喉槽过槽的水流特性及测流精度,基于临界流原理和RNGk-ε三维湍流模型,利用FLOW-3D软件对喉道宽度为76mm的田间便携式短喉槽在16种工况下的水力特性进行全流场数值计算,获得了时均流场、槽内水流流态、断面流速分布及佛汝德数,并与试验实测值进行对比分析。结果表明:1)模拟流场分布及流态与模型试验情况具有一致性,量测流量范围宽,最大可达40L/s,能够满足田间量水的流量要求;2)水深、断面流速、佛汝德数模拟值与实测值基本吻合,相对误差均小于10%;3)该短喉槽最大水头损失占总水头的12.89%,小于长喉槽最大水头损失占总水头的13%;4)通过回归分析得到了田间便携式短喉槽的上游水深-流量计算公式,其最大测流误差为9.95%,满足灌区量水精度的要求。  相似文献   
83.
目前渠道分水口分流规律的研究侧重于分水口两侧渠底高程一致的情况,但在实际工程中多为侧渠道渠底高程高于主渠道渠底,针对这一实际问题,对矩形渠道直口渠分水口进行分流规律试验,测量分水口处的水深,获得分水口处的水面线,分析不同分流比下,水面变化和分流比与相对堰上水头、主渠上下游傅汝德数的关系及流向角与分流比的关系。结果表明:不同来流量下,分水口附近的的水面线变化规律基本一致,都为壅水曲线;同一流量下,分流比随相对堰上水头的增大而增大,随主渠道分水口上下游傅汝德数的增大而减小;同一流量下,流向角随分流比的增大而增大,增加趋势逐渐变缓,最大流向角均趋近于60°。  相似文献   
84.
U形渠道便携式板柱结合型量水槽水力性能研究   总被引:2,自引:0,他引:2  
针对灌区小型渠道数目多、需测控的断面多、而宜采用的移动式量水设备仍不够完善的问题,借鉴移动式薄板量水槽和圆柱量水槽的优点,设计了一种便携式板柱结合型量水槽,在分析量水槽测流机理的基础上,开展原型试验和数值模拟研究,并应用量纲分析法建立测流公式。结果表明,量水槽具有较好的水位-流量关系,上游壅水高度在1. 85~13. 69 cm之间,临界淹没度在0. 70~0. 91之间,槽前弗汝徳数均小于0. 5;板柱结合型量水槽比现有的圆柱量水槽和带尾翼的圆头量水槽体型小,便携度高,流线分布稍差,上游壅水高度稍大,临界淹没度稍低,但能满足灌区测流要求;量水槽测流精度高,平均测流相对误差为2. 07%。  相似文献   
85.
为了探索U形渠道斜坎量水堰水力性能及影响因素,采用试验及计算流体力学软件(FLOW-3D)对量水堰体型参数不同时,在各流量工况下的过堰水流流场进行模拟,获得其水面线变化、断面流速分布以及量水堰最大堰高所在断面附近的佛汝德数。结果表明:数值模拟与试验所得的水面线变化情况具有较好的一致性,模拟所得佛汝德数和断面流速分布均与理论结果吻合。通过量纲分析法将试验数据运用spss进行拟合得到的测流公式具有较高的测流精度,相对误差最大为6.68%,最小仅为-0.13%,满足灌区量水设施精度要求。  相似文献   
86.
土壤电导率能够间接反映田间养分或盐分含量,通过监测土壤电导率可以掌握土壤养分或盐分运移和利用情况。本文通过2种土壤容重、5种含水率条件下土柱入渗试验,利用5TE传感器对土壤体积含水率、体积电导率、温度等参数进行连续监测,分析容重及含水率对土壤电导率的影响。结果表明:在入渗过程中,含水率和电导率均先增大后逐渐减小,最后趋于平缓;电导率开始减小的时间较含水率开始减小的时间略有提前;当体积含水率一定时,孔隙水电导率随体积电导率的增加基本呈线性增加;随含水率的增大,孔隙水电导率随体积水电导率增大的速率变慢;当体积电导率一定时,随着含水率的增加,孔隙水电导率逐渐减小,容重为1.35 g·cm-3时减幅为9.52%~55.51%,容重为1.3 g·cm-3时减幅为9.72%~54.62%;孔隙水电导率一定时,体积电导率随含水率的增加而增大,容重为1.35 g·cm-3时增幅为10.51%~124.75%,容重为1.3 g·cm-3时增幅为10.76%~120.35%。对于2种容重情况,相同含水率下孔隙水电导率与...  相似文献   
87.
以生菜为试材,在人工光环境条件下进行水培试验,在不同营养液浓度(山崎营养液配方0.8、1.0、1.2倍)和不同光照强度(80、130、180μmol·m~(-2)·s~(-1))处理组合下,测定了收获期生菜的产量和维生素C、硝酸盐、可溶性蛋白质以及可溶性糖等品质指标,研究了营养液浓度与光照强度处理组合对水培生菜产量和品质的影响。结果表明:1.0倍营养液与180μmol·m~(-2)·s~(-1)光照强度处理下生菜地上鲜质量最大、硝酸盐含量最低;1.2倍营养液与180μmol·m~(-2)·s~(-1)光照强度处理下生菜的可溶性糖含量最高;1.0倍营养液与130μmol·m~(-2)·s~(-1)光照强度处理下生菜的可溶性蛋白质、维生素C含量最高。综合考虑,1.0倍营养液与180μmol·m~(-2)·s~(-1)光照强度处理为水培生菜最佳处理。  相似文献   
88.
研究稀疏植被下垫面水热通量特征对于提高农业水管理和高效利用农业气候资源极为重要,利用2018年葡萄园波文比系统数据和气象资料,分析了半湿润地区葡萄园下垫面水热通量在不同生育阶段和典型天气条件下的分配特征及潜热通量对相关气象因素的响应,并运用BP神经网络对葡萄园潜热通量进行预测,根据预测模型,分析比较潜热通量对环境因子变化的敏感性。结果表明,水热通量的日变化呈单峰二次曲线,从7∶00左右开始增长,12∶30左右达到峰值后开始减小,夜间基本不变。感热通量在全部生育期都占了地表能量的绝大部分,潜热通量较小,所占比例随生育期时间逐渐增大,在果实膨大期达到最大后开始减小。在雨天,水热通量各分量都比晴天小,潜热通量略大于感热通量。而阴天潜热通量的变化幅度明显比其他天气条件下都大。BP神经网络根据气象因子模拟出的潜热通量与波文比法的计算值相关性较高,同时,潜热通量对净辐射和土壤热通量的变化最为敏感,而对风速变化的敏感性较低。  相似文献   
89.
水肥一体微喷带沿程压力及肥液浓度分布规律试验研究   总被引:1,自引:0,他引:1  
为分析水肥一体化微喷带运行过程中沿程肥液浓度分布规律及影响因素,研究了肥料种类、施肥罐压差对微喷带沿程压力和肥液浓度分布的影响。结果表明,在微喷带铺设长度为40 m时,沿程压力逐渐降低,但降幅逐渐减缓;管首压力越大管道首尾压差越大,微喷带施肥均匀性越低。综合微喷带有效喷洒范围,大田微喷带存在适宜首部工作压力(本研究中的微喷带为50~60 kPa)。N肥(易溶肥料)沿程浓度受施肥罐作用压差影响明显,P肥(难溶肥料)沿程浓度变化趋势平缓,浓度随时间变化急剧。在实际生产实践中,应根据不同的肥料确定合适的工作压力及施肥罐作用压差,选择合适的喷洒时间以保证微喷带施肥均匀性及施肥量。  相似文献   
90.
试验探究不同压力下微喷带水量分布均匀系数的变化规律,通过公式计算了垂直于微喷带、沿微喷带方向和总面积的水量分布均匀系数,分析不同水头工作压力对不同类型微喷带在水量分布均匀性上的影响。试验对常见的机械打孔的Ф28,Ф32和Ф40微喷带,通过改变微喷带的工作压力值,设置6种不同的微喷带首部工作压力,探究不同结构类型的微喷带在不同的首部工作压力下的水量分布均匀系数。微喷带的水量分布均匀系数与首部工作水头及管径均匀性密切相关,在一定的工作压力范围内,微喷带的灌溉效果能达到最好;随着工作压力的变化,Ф28与Ф40微喷带的水量分布均匀系数变化较平缓,而Ф32微喷带的水量分布均匀系数变化波动大,3种结构类型微喷带的水量分布均匀系数均在工作压力值为32~36 kPa的范围内出现最大值。为保证较好的灌溉均匀度,一定作用压力条件下微喷带存在极限铺设长度;实际使用中,应根据微喷带的具体结构形式设定铺设长度与首部工作压力。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号