首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16809篇
  免费   20篇
林业   3661篇
农学   1352篇
基础科学   143篇
  2828篇
综合类   738篇
农作物   2116篇
水产渔业   1813篇
畜牧兽医   1163篇
园艺   1127篇
植物保护   1888篇
  2023年   3篇
  2022年   9篇
  2021年   12篇
  2020年   15篇
  2019年   6篇
  2018年   2761篇
  2017年   2714篇
  2016年   1189篇
  2015年   80篇
  2014年   33篇
  2013年   48篇
  2012年   811篇
  2011年   2145篇
  2010年   2116篇
  2009年   1269篇
  2008年   1333篇
  2007年   1585篇
  2006年   39篇
  2005年   103篇
  2004年   112篇
  2003年   157篇
  2002年   62篇
  2001年   12篇
  2000年   45篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1995年   5篇
  1993年   15篇
  1992年   10篇
  1990年   8篇
  1989年   8篇
  1988年   16篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1983年   6篇
  1981年   3篇
  1980年   3篇
  1979年   11篇
  1978年   3篇
  1977年   7篇
  1976年   2篇
  1973年   3篇
  1972年   5篇
  1970年   3篇
  1969年   6篇
  1968年   9篇
  1967年   9篇
  1966年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.

Background

The pathogenic mechanism of equine recurrent uveitis (ERU) is still poorly defined and many variations between experimental animal models and spontaneous disease exist.

Objectives

The aim of our study was to investigate if Th17 cell-mediated response plays role in the pathogenesis of the used experimental model in horses and to reveal its pathological findings.

Methods

Experimental uveitis was induced in 6 healthy horses. The concentrations of retinal autoantigen CRALBP and IL-17 were measured using ELISA in aqueous humor and vitreous body of the 12 inflamed eyes as well as in 12 control non-inflamed eyes taken from 6 horses in slaughter house. After centrifugation of the two eye media, smears were prepared and cytological investigation was performed. Tissue specimens were taken from all eye globes and were submitted to histopathological investigation.

Results

CRALBP and IL-17 concentrations were significantly elevated in eye media of horses with experimental uveitis in comparison with controls. Cytological and histopathological findings corresponded to the changes characteristic of chronic immune-mediated inflammation with mononuclear cell infiltration of uvea, choroid, retina, and eye media as well as severe retinal destruction.

Conclusions

Our study demonstrated the involvement of the retinal autoantigen CRALBP as well as IL-17 in the pathogenesis of experimental uveitis in horses. These findings suggests that this experimental uveitis in horses may serve as a suitable animal model for investigation of IL-17- mediated immune response during spontaneous autoimmune uveitis in horses as well as in humans.
  相似文献   
62.
Epidemiological and bacteriological survey of buffalo mastitis in Nepal   总被引:2,自引:0,他引:2  
A total of 355 Murrah cross buffaloes, consisting of 23 subclinical and 332 clinical mastitis cases brought to the Veterinary Teaching Hospital, Chitwan, Nepal from 2002 to 2005, were analyzed to determine the organisms involved, the seasonal occurrence of mastitis, and antibiotic susceptibility of mastitis pathogens. Coagulase negative Staphylococci (CNS) such as Staphylococcus albus and S. epidermidis were the predominant organisms associated with subclinical cases, and CNS and Coliforms in clinical cases. The maximum number (16%) of clinical cases of mastitis were observed in the month of July, when temperature and humidity are highest. The incidence of clinical mastitis was higher in animals during 1st calving and during the 1st month of parturition. Resistance to antibiotics was determined for 55, 23 and 149 isolates of Staphylococcus spp., Streptococcus spp. and Coliforms, respectively. In vitro drug sensitivity testing revealed that enrofloxacin had the highest average sensitivity (91%) for all types of bacteria. The effectiveness of other drugs detected were gentamicin (87%), tetracycline (83%) and chloramphenicol (82%). The antibiogram showed that both gentamicin and enrofloxacin are slowly becoming resistant. Mastitis pathogens have developed resistance to ampicillin and penicillin.  相似文献   
63.
Irrigation techniques that reduce water applications are increasingly applied in areas with scarce water resources. In this study, the effect of two regulated deficit irrigation (RDI) strategies on peach [Prunus persica (L.) Batsch cv. “Catherine”] performance was studied over three growing seasons. The experimental site was located in Murcia (SE Spain), a Mediterranean region. Two RDI strategies (restricting water applications at stage II of fruit development and postharvest) based on stem water potential (Ψs) thresholds (?1.5 and ?1.8 MPa during fruit growth and ?1.5 and ?2.0 MPa during postharvest) were compared to a fully irrigated control. Soil water content (θv), Ψs, gas exchange parameters, vegetative growth, crop load, yield and fruit quality were determined. RDI treatments showed significantly lower values of θv and Ψs than control trees when irrigation water was restricted, causing reductions in stomatal conductance and photosynthesis rates. Vegetative growth was reduced by RDI, as lower shoot lengths and pruning weights were observed under those treatments when compared to control. However, fruit size and yield were unaffected, and fruit quality was slightly improved by RDI. Water savings from 43 to 65 % were achieved depending on the year and the RDI strategy, and no negative carryover effect was detected during the study period. In conclusion, RDI strategies using Ψs thresholds for scheduling irrigation in mid–late maturing peach trees under Mediterranean conditions are viable options to save water without compromising yield and even improving fruit quality.  相似文献   
64.
The use of overhead trellis systems for the production of dry-on-vine (DOV) raisins and table grapes in California is expanding. Studies were conducted from 2006 to 2009 using Thompson Seedless grapevines grown in a weighing lysimeter trained to an overhead arbor trellis and farmed as DOV raisins for the first two years and for use as table grapes thereafter. Maximum canopy coverage for the two lysimeter vines across years was in excess of 80 %. Seasonal (15 March–31 October) evapotranspiration for the lysimeter vines (ETLys) was 952 mm in 2007 (farmed as DOV raisins) and 943 and 952 mm (when farmed as table grapes). The maximum crop coefficient (K cLys) across all 4 years ranged from 1.3 to 1.4. These maximum values were similar to those estimated using the relationship where K c is a function of the amount of shaded area measured beneath the canopy at solar noon (K c = 0.017 × percent shaded area). Covering the lysimeter’s soil surface with plastic (and then removing it) numerous times during the 2009 growing season (1 June–14 September) reduced ETLys from an average of 6.4 to 5.6 mm day?1 and the K c from 1.07 to 0.93. A seasonal basal K c (K cb) was calculated for grapevines using an overhead trellis system with a 13 % reduction in the K cLys across the growing season.  相似文献   
65.
In the High Plains, corn (Zea mays L.) is an important commodity for livestock feed. However, limited water resources and drought conditions continue to hinder corn production. Drought-tolerant (DT) corn hybrids could help maintain high yields under water-limited conditions, though consistent response of such hybrids is unverified. In this two-year study, the effects of three irrigation treatments were investigated for a DT and conventional maize hybrid, Pioneer AQUAMax P0876HR and Pioneer 33Y75, respectively. In 2013, the drier of the 2 years, irrigation amounts and crop water use (ETc) were greater for the conventional hybrid, but grain water use efficiency (WUE) and harvest index were significantly greater for the DT hybrid. In 2014, grain yields and WUE were not significantly different between hybrids. However, irrigation amounts, ETc and biomass yields were greater for the conventional hybrid. Results from both years indicate that the DT hybrid required less water to maximize grain yield as compared to the conventional hybrid. Producing relatively high yields with reduced amounts of water may provide a means for producers to continue corn production in a semiarid environment with declining water supplies.  相似文献   
66.
Intercropping, drip irrigation, and the use of plastic mulch are important management practices, which can, when utilized simultaneously, increase crop production and save irrigation water. Investigating soil water dynamics in the root zone of the intercropping field under such conditions is essential in order to understand the combined effects of these practices and to promote their wider use. However, not much work has been done to investigate soil water dynamics in the root zone of drip-irrigated, strip intercropping fields under plastic mulch. Three field experiments with different irrigation treatments (high T1, moderate T2, and low T3) were conducted to evaluate soil water contents (SWC) at different locations, for different irrigation treatments, and with respect to dripper lines and plants (corn and tomatoes). Experimental data were then used to calibrate the HYDRUS (2D/3D) model. Comparison between experimental data and model simulations showed that HYDRUS (2D/3D) described different irrigation events and SWC in the root zone well, with average relative errors of 10.8, 9.5, and 11.6 % for irrigation treatments T1, T2, and T3, respectively, and with corresponding root mean square errors of 0.043, 0.035, and 0.040 cm3 cm?3, respectively. The results showed that the SWC in the shallow root zone (0–40 cm) was lower under non-mulched locations than under mulched locations, irrespective of the irrigation treatment, while no significant differences in the SWC were observed in the deeper root zone (40–100 cm). The SWC in the shallow root zone was significantly higher for the high irrigation treatment (T1) than for the low irrigation treatment, while, again, no differences were observed in the deeper root zone. Simulations of two-dimensional SWC distributions revealed that the low irrigation treatment (T3) produced serious severe water stress (with SWCs near the wilting point) in the 30–40 cm part of the root zone, and that using separate drip emitter lines for each crop is well suited for producing the optimal soil water distribution pattern in the root zone of the intercropping field. The results of this study can be very useful in designing an optimal irrigation plan for intercropped fields.  相似文献   
67.
Summary The Lewis-Milne (LM) equation has been widely applied for design of border irrigation systems. This equation is based on the concept of mass conservation while the momentum balance is replaced by the assumption of a constant surface water depth. Although this constant water depth depends on the inflow rate, slope and roughness of the infiltrating surface, no explicit relation has been derived for its estimation. Assuming negligible border slope, the present study theoretically treats the constant depth in the LM equation by utilizing the simple dam-break wave solution along with boundary layer theory. The wave front is analyzed separately from the rest of the advancing water by considering both friction and infiltration effects on the momentum balance. The resulting equations in their general form are too complicated for closed-form solutions. Solutions are therefore given for specialized cases and the mean depth of flow is presented as a function of the initial water depth at the inlet, the surface roughness and the rate of infiltration. The solution is calibrated and tested using experimental data.Abbreviations a (t) advance length - c mean depth in LM equation - c f friction factor - c h Chezy's friction coefficient - g acceleration due to gravity - h(x, t) water depth - h 0 water depth at the upstream end - i() rate of infiltration - f(x, t) discharge - q0 constant inflow discharge - S f energy loss gradient or frictional slope - S0 bed slope - t time - u(x, t) mean velocity along the water depth - x distance - Y() cumulative infiltration - (t) distance separating two flow regions - infiltration opportunity time  相似文献   
68.
A model for optimal operation of water supply/irrigation systems of various water quality sources, with treatment plants, multiple water quality conservative factors, and dilution junctions is presented. The objective function includes water cost at the sources, water conveyance costs which account for the hydraulics of the network indirectly, water treatment cost, and yield reduction costs of irrigated crops due to irrigation with poor quality water. The model can be used for systems with supply by canals as well as pipes, which serve both drinking water demands of urban/rural consumers and field irrigation requirements. The general nonlinear optimization problem has been simplified by decomposing it to a problem with linear constraints and nonlinear objective function. This problem is solved using the projected gradient method. The method is demonstrated for a regional water supply system in southern Israel that contains 39 pipes, 37 nodes, 11 sources, 10 agricultural consumers, and 4 domestic consumers. The optimal operation solution is described by discharge and salinity values for all pipes of the network. Sensitivity of the optimal solution to changes in the parameters is examined. The solution was found to be sensitive to the upper limit on drinking water quality, with total cost being reduced by 5% as the upper limit increases from 260 to 600 mg Cl l–1. The effect of income from unit crop yield is more pronounced. An increase of income by a factor of 20 results in an increase of the total cost by a factor of 3, thus encouraging more use of fresh water as long as the marginal cost of water supply is smaller than the marginal decrease in yield loss. The effect of conveyance cost becomes more pronounced as its cost increases. An increase by a factor of 100 results in an increase of the total cost by about 14%. The network studied has a long pipe that connects two distinct parts of the network and permits the supply of fresh water from one part to the other. Increasing the maximum permitted discharge in this pipe from 0 to 200 m3 h–1 reduces the total cost by 11%. Increasing the maximum discharge at one of the sources from 90 to 300 m3 h–1 reduces the total cost by about 8%.  相似文献   
69.
A modern computer-based simulation tool (WaterMan) in the form of a game for on-farm water management was developed for application in training events for farmers, students, and irrigators. The WaterMan game utilizes an interactive framework, thereby allowing the user to develop scenarios and test alternatives in a convenient, risk-free environment. It includes a comprehensive soil water and salt balance calculation algorithm. It also employs heuristic capabilities for modeling all of the important aspects of on-farm water management, and to provide quantitative performance evaluations and practical water management advice to the trainees. Random events (both favorable and unfavorable) and different strategic decisions are included in the game for more realism and to provide an appropriate level of challenge according to player performance. Thus, the ability to anticipate the player skill level, and to reply with random events appropriate to the anticipated level, is provided by the heuristic capabilities used in the software. These heuristic features were developed based on a combination of two artificial intelligence approaches: (1) a pattern recognition approach and (2) reinforcement learning based on a Markov decision processes approach, specifically the Q-learning method. These two approaches were combined in a new way to account for the difference in the effect of actions taken by the player and action taken by the system in the game world. The reward function for the Q-learning method was modified to reflect the suggested classification of the WaterMan game as what is referred to as a partially competitive and partially cooperative game.  相似文献   
70.
Management reforms are considered one of the best alternatives in increasing efficiency of the irrigation systems. Transfer of day-to-day operation and maintenance to farmers is not a new concept. However due to lags, even now it is a hot issue in developing countries and Nepal is not an exception. In this context of growing argument about the transfer of management of public irrigation systems to the Water Users' Group, this paper examines the comparative performance of farmer-managed and agency-managed irrigation systems. Khageri Irrigation System in the Chitwan district of Nepal was taken as the study site where complete management transfer has been done in 1996. The situations before and after complete transfer were compared. Intensive case studies of the selected farmers showed that equity in distribution of water and leakage had significantly improved after management transfer. Logit analysis revealed that age and education level of the household head, distance from main canal, leakage of the canal and equity in distribution are significantly related to the satisfaction level of the beneficiary farmers from FMIS compared to AMIS. However, landholding size of the respondent farmer has no significant effect. Similarly results from t-test revealed that rice productivity and overall profits from agriculture has also increased significantly due to irrigation management transfer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号