首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6015篇
  免费   348篇
林业   1121篇
农学   164篇
基础科学   11篇
  1328篇
综合类   577篇
农作物   161篇
水产渔业   192篇
畜牧兽医   2252篇
园艺   134篇
植物保护   423篇
  2023年   45篇
  2022年   44篇
  2021年   93篇
  2020年   94篇
  2019年   61篇
  2018年   203篇
  2017年   185篇
  2016年   170篇
  2015年   145篇
  2014年   162篇
  2013年   377篇
  2012年   348篇
  2011年   379篇
  2010年   188篇
  2009年   168篇
  2008年   309篇
  2007年   326篇
  2006年   330篇
  2005年   276篇
  2004年   271篇
  2003年   280篇
  2002年   229篇
  2001年   187篇
  2000年   176篇
  1999年   108篇
  1998年   36篇
  1997年   38篇
  1996年   45篇
  1995年   74篇
  1994年   45篇
  1993年   21篇
  1992年   23篇
  1991年   23篇
  1990年   25篇
  1989年   16篇
  1988年   25篇
  1987年   17篇
  1986年   33篇
  1985年   29篇
  1984年   24篇
  1983年   20篇
  1980年   26篇
  1977年   22篇
  1970年   16篇
  1968年   14篇
  1966年   19篇
  1955年   14篇
  1941年   16篇
  1939年   14篇
  1937年   15篇
排序方式: 共有6363条查询结果,搜索用时 31 毫秒
91.
Microbially derived off-flavor is a major problem in apple juice production as it diminishes the sensory quality of the juice significantly. Fifteen relevant off-flavor compounds that are formed in apple juice, for example, by the strains Alicyclobacillus acidoterrestris and Actinomycetes (Streptomyces ssp.) were investigated with respect to their sensory relevance. The odor threshold values (i.e., detection and recognition values) were determined for all compounds in the matrix apple juice. Odor threshold values for fenchyl alcohol are reported here for the first time. The obtained values were set in relation to the limits of detection and quantification of a previously published GC-MS method. Eight tainted apple juice samples were analyzed for the presence of the 2 strains and the 15 off-flavor compounds. Both strains could be found in the samples; the presence of Streptomyces ssp. as spoilage bacteria of apple juice is reported for the first time. In samples with distinct off-flavor, 2-isopropyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine, 2-methylisoborneol, 1-octen-3-ol, fenchyl alcohol, geosmin, and guaiacol as well as 2,6-dibromophenol were determined in concentrations higher than the detection threshold.  相似文献   
92.
Background, Aim and Scope   Part 1: Behaviour of Polycyclic Musks in Sewage Sludge of Different Treatment Plants in Summer and Winter Part 2: Investigation of Polycyclic Musks in Soils and Plants -  Preamble. In Part 1 of the study, screening tests were performed to investigate the occurrence of PCMs in sewage sludges. For a preliminary risk assessment, further information is needed about their behaviour in the terrestrial environment. Hence, Part 2 examined the adsorption of PCMs to soil, their dissipation and leaching in soil and their uptake by plants. Background, Aim and Scope   Polycyclic Musks (PCMs) enter the environment via the waste water system. Because of their persistence, they can accumulate in different matrices like sewage sludge or biota. By the use of sewage sludge as a fertilizer, PCMs are transferred to agricultural soils. Therefore, in Part 1 of the study, screening tests were performed to investigate the occurrence of PCMs in sewage sludge. For a preliminary risk assessment, further information is needed about their behaviour in the terrestrial environment. Hence, Part 2 of the study examined the adsorption of PCMs to soil, their dissipation and leaching in soil, and their uptake by plants. Materials and Methods: In the screening study, samples of activated sewage sludge were taken both in summer and in winter at 21 treatment plants. In order to get an overview of the contamination situation, sampling covered different types of treatment plants (in rural, urban, industrial areas). Analytical methods for the determination of HHCB, AHTN, ADBI, ATTN, AHDI and ATII in the sludge samples were developed and applied. Results: The analytical screening of PCMs showed their presence in activated and dried sewage sludge samples. HHCB and AHTN represented about 95% of the PCMs investigated. Their concentrations in the activated sludge samples varied between 2.9 and 10.4 mg/kg dry mass (dm) and 1.1 to 4.2 mg/kg dm, respectively. Although different types of sewage treatment plants were investigated, similar PCM levels were found, showing the widespread input of these compounds into domestic waste water. Discussion: PCM concentrations in activated sludge varied widely. The variation drops substantially when concentrations are related to the varying dry mass. In dehydrated sludge, PCM concentrations were up to 24 mg/kg dm for HHCB and up to 6.9 mg/kg dm for AHTN. These high values are comparable to those obtained in other investigations analysing PCMs. If the degradation of organic mass during anaerobic decomposition is included in the evaluation, the figures obtained are comparable to those for activated sludge. Elimination in sewage sludge was higher in summer than in winter. Therefore, the contamination of the sludges in winter reached higher levels compared to the summer. Conclusions: The results show that PCMs are widespread contaminants in sewage sludge. Recommendations and Perspectives: PCM should be considered in a risk assessment as potential contaminants of sewage sludge destined for agricultural use. Due to the high PCM levels in sewage sludge, further investigations into the degradation and elimination behaviour in sewage sludge have to be carried out, including that involving PCM metabolites such as lactone derivatives.  相似文献   
93.
Cereals contaminated by Aspergillus spp., Penicillium spp., and Fusarium spp. and their mycotoxins, for example, ochratoxin A (OTA) and deoxynivalenol (DON), are not only a risk to human and animal health but can also show poor technological properties and baking quality. The influence of these genera on the sulfur speciation of low molecular weight (LMW) subunits of glutenin was characterized by investigating suboptimally stored wheat samples in situ by X-ray absorption near edge structure (XANES) spectroscopy and baking tests. Field fungi of the genus Fusarium have hardly any influence on both the sulfur speciation of wheat gluten proteins and the baking properties, whereas storage fungi of the genera Aspergillus and Penicillium have a direct influence. An increased amount of sulfur in sulfonic acid state was found, which is not available for thiol/disulfide exchange reactions in the gluten network, and thus leads to a considerably reduced baking volume. From changes of the composition of the mould flora during suboptimal storage of wheat and from the mycotoxin contents, it can be concluded that microbial competitive interactions play an important role in the development of the mould flora and the mycotoxin concentrations during (suboptimal) storage of wheat.  相似文献   
94.
Genetic mapping of loci determining long glumes in the genus Triticum   总被引:1,自引:0,他引:1  
Elongated glumes are present in thetetraploid wheat species T.polonicum, T. turanicum, T.durum convar. falcatum and in thehexaploid species T. petropavlovskyi.Inheritance of glume length was studiedwith the aim to map the respective lociusing wheat microsatellite markers. In T. polonicum and T. petropavlovskyiloci conferring long glume were mapped nearthe centromere on chromosome 7A. These twoloci are designated P-A pol 1 andP-A pet 1, respectively. It isshown that both are probably homoeoallelicto each other and to the P gene ofT. ispahanicum on chromosome 7B. The loci determining elongated glumes in T. turanicum and T. durum conv. falcatum are not homoeologous to the P loci in the centromeric region of thegroup 7 chromosomes.  相似文献   
95.
Penetration resistance, bulk density, soil water content and root growth of oats were intensively studied in a tilled and an untilled grey brown podzolic loess soil. Bulk density and penetration resistance were higher in the top layer of the untilled soil compared with the tilled soil. In the latter, however, a traffic pan existed in the 25–30 cm soil layer which had higher bulk density and penetration resistance than any layer of the untilled soil. Above the traffic pan, rooting density (cm root length per cm3 of soil) was higher but below the pan it was lower than at the same depth in the untilled soil. Root growth was linearly related to penetration resistance. The limiting penetration resistance for root growth was 3.6 MPa in the tilled Ap-horizon but 4.6-5.1 MPa in the untilled Ap-horizon and in the subsoil of both tillage treatments. This difference in the soil strength-root growth relationship is explained by the build up of a continuous pore system in untilled soil, created by earthworms and the roots from preceding crops. These biopores, which occupy < 1% of the soil volume, can be utilized by roots of subsequent crops as passages of comparatively low soil strength. The channeling of bulk soil may counteract the possible root restricting effect of an increased soil strength which is frequently observed in the zero tillage system.  相似文献   
96.
Carbon and nitrogen budgets of nematodes in arable soil   总被引:2,自引:0,他引:2  
Summary The amounts of C and N that pass through the nematode biomass in four cropping systems, barley without and with N fertilization, grass ley and lucerne, has been estimated. The nematodes were sampled at the field site of a Swedish integrated research project Ecology of Arable Land: The Role of Organisms in Nitrogen Cycling. The nematode biomass was lower (200 mg dry weight m–2) in the annual (barley) than in the perennial (grass and lucerne, 350 mg dry weight m–2) crops. For respiration, the nematodes used 4–71 O2m–2 year–1 corresponding to C liberation of 1.3%–2.0% of the carbon input to the soil. A higher relative contribution by bacterial-feeding nematodes to the C and N fluxes and a higher turnover rate of the nematode biomass is an indication of more rapid nutrient circulation in the annual than in the perennial cropping systems.  相似文献   
97.
To prepare composite films from biopolymers with anti-listerial activity and moisture barrier properties, the antimicrobial efficiency of chitosan-hydroxy propyl methyl cellulose (HPMC) films, chitosan-HPMC films associated with lipid, and chitosan-HPMC films chemically modified by cross-linking were evaluated. In addition, the physicochemical properties of composite films were evaluated to determine their potential for food applications. The incorporation of stearic acid into the composite chitosan-HPMC film formulation decreased water sensitivity such as initial solubility in water and water drop angle. Thus, cross-linking of composite chitosan-HPMC, using citric acid as the cross-linking agent, led to a 40% reduction in solubility in water. The water vapor transfer rate of HPMC film, approximately 270 g x m(-2) x day(-1) x atm(-1), was improved by incorporating chitosan and was further reduced 40% by the addition of stearic acid and/or cross-linking. Anti-listerial activity of films was determined on solid medium by a numeration technique. Chitosan-HPMC-based films, with and without stearic acid, inhibited the growth of Listeria monocytogenes completely. On the other hand, a loss of antimicrobial activity after chemical cross-linking modification was observed. FTIR and 13C NMR analyses were then conducted in order to study a potential chemical modification of biopolymers such as a chemical reaction with the amino group of chitosan. To complete the study, the mechanical properties of composite films were determined from tensile strength assays.  相似文献   
98.
Metsulfuron methyl sorption-desorption in field-moist soils   总被引:4,自引:0,他引:4  
Pesticide sorption coefficients (K(d)) are generally obtained using batch slurry methods. As a consequence, the results may not adequately reflect sorption processes in field-moist or unsaturated soil. The objective of this study was to determine sorption of metsulfuron methyl, a weak acid, in field-moist soils. Experiments were performed using low density (i.e., 0.3 g mL(-)(1)) supercritical fluid carbon dioxide (SF-CO(2)) to convert anionic metsulfuron methyl to the molecular species and remove it from the soil water phase only, thus allowing calculation of sorption coefficients (K(d)) at low water contents. K(d) values for sorption of the metsulfuron methyl molecular species on sandy loam, silt loam, and clay loam soil at 11% water content were 120, 180, and 320 mL g(-)(1), respectively. Using neutral species K(d) values, the pK(a) of metsulfuron methyl, and the pH of the soil, we could successfully predict the K(d) values obtained using the batch slurry technique, which typically has a predominance of anionic species in solution during the sorption characterization. This application of supercritical fluid extraction to determine sorption coefficients, combined with sulfonylureas' pK(a) values and the soil pH, will provide an easy method to predict sorption in soil at different pH levels.  相似文献   
99.
Based on recent findings in the literature, we developed a process‐oriented conceptual model that integrates all three process groups of organic matter (OM) stabilization in soils namely (1) selective preservation of recalcitrant compounds, (2) spatial inaccessibility to decomposer organisms, and (3) interactions of OM with minerals and metal ions. The model concept relates the diverse stabilization mechanisms to active, intermediate, and passive pools. The formation of the passive pool is regarded as hierarchical structured co‐action of various processes that are active under specific pedogenetic conditions. To evaluate the model, we used data of pool sizes and turnover times of soil OM fractions from horizons of two acid forest and two agricultural soils. Selective preservation of recalcitrant compounds is relevant in the active pool and particularly in soil horizons with high C contents. Biogenic aggregation preserves OM in the intermediate pool and is limited to topsoil horizons. Spatial inaccessibility due to the occlusion of OM in clay microstructures and due to the formation of hydrophobic surfaces stabilizes OM in the passive pool. If present, charcoal contributes to the passive pool mainly in topsoil horizons. The importance of organo‐mineral interactions for OM stabilization in the passive pool is well‐known and increases with soil depth. Hydrophobicity is particularly relevant in acid soils and in soils with considerable inputs of charcoal. We conclude that the stabilization potentials of soils are site‐ and horizon‐specific. Furthermore, management affects key stabilization mechanisms. Tillage increases the importance of organo‐mineral interactions for OM stabilization, and in Ap horizons with high microbial activity and C turnover, organo‐mineral interactions can contribute to OM stabilization in the intermediate pool. The application of our model showed that we need a better understanding of processes causing spatial inaccessibility of OM to decomposers in the passive pool.  相似文献   
100.
Large areas of remaining tropical forests are affected by anthropogenic disturbances of various intensities. These disturbances alter the structure of the forest ecosystem and consequently its carbon budget. We analysed the role of fine root dynamics in the soil carbon budget of tropical moist forests in South-east Asia along a gradient of increasing disturbance intensity. Fine root production, fine root turnover, and the associated carbon fluxes from the fine root system to the soil were estimated with three different approaches in five stands ranging from an old growth forest with negligible anthropogenic disturbance to a cacao agroforestry system with planted shade trees. Annual fine root production and mortality in three natural forest sites with increasing canopy openness decreased continuously with increasing forest disturbance, with a reduction of more than 45% between the undisturbed forest and the forest with large timber extraction. Cacao agroforestry stands had higher fine root production and mortality rates than forest with large timber extraction but less than undisturbed forest. The amount of carbon annually transferred to the soil carbon pool through fine root mortality was highest in the undisturbed forest and generally decreased with increasing forest use intensity. However, root-related C flux was also relatively high in the plantation with planted shading trees. In contrast, the relative importance of C transfer from root death in the total above- and below-ground C input to the soil increased with increasing forest use intensity and was even similar to the C input via leaf litter fall in the more intensively managed agroforest. We conclude that moderate to heavy disturbance in South-east Asian tropical moist forests has a profound impact on fine root turnover and the related carbon transfer to the soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号