首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44篇
  免费   2篇
  国内免费   4篇
  3篇
综合类   6篇
植物保护   41篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   5篇
  2001年   2篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
41.
以各助剂临界胶束浓度(CMC)为参考,在室内条件下研究了添加不同浓度6种喷雾助剂对硝磺草酮防除禾本科杂草稗草及阔叶杂草反枝苋效果的影响,并探讨了各助剂的CMC值与硝磺草酮药效之间的关系。从助剂改变药液在植物叶片上的接触角与最大稳定持流量两个方面,分析了6种助剂对提高硝磺草酮除草效果的原因。结果表明:6种供试助剂添加浓度在不小于其CM C值时即可明显提高硝磺草酮在杂草上的有效沉积量,且均可不同程度地提高硝磺草酮对稗草及反枝苋的除草活性,对稗草的鲜重抑制活性比对反枝苋的高;其中GY-Tmax和S903效果较好,其次是GY-T12和QS-304,OP-10与S625效果略差。6种助剂通过降低药液在两种杂草叶片上的接触角、增大药液对靶标植物的最大稳定持流量,可提高硝磺草酮的除草效果。  相似文献   
42.
氟乐灵微囊的制备、表征及其光稳定性研究   总被引:1,自引:1,他引:0  
为增强氟乐灵的光稳定性,提高其有效利用率,以壳聚糖(CS)和甲基丙烯酸甲酯(MMA)为壁材,采用原位聚合法制备了氟乐灵微囊,并测定了其外观形态、粒径及其分布、包封率和载药量,同时研究了其释放特性及其在土壤和水中的光稳定性。结果表明:所制备的氟乐灵微囊呈规则球形;粒径在3~10μm之间,平均粒径为6.5μm;包封率和载药量分别为79%和45%;该微囊具有良好的缓释性能,释放以Fick扩散为主;与氟乐灵乳油相比,氟乐灵微囊的光稳定性显著增强,在试验条件下,其在土壤表面和水中的光解半衰期分别为22 d和173 min。  相似文献   
43.
为了明确农药制剂配方中不同类型助剂对药液性能的影响,用旋滴法测定了分散剂、润湿剂及复合表面活性剂体系水溶液的表面张力变化.结果表明,分散剂DC04、润湿剂WLNO 200与其它农药助剂比较,具有较高的表面活性,二者复配后表面活性剂体系水溶液的表面张力曲线与润湿剂的表面张力曲线相近,复配比在3∶1时可产生明显的协同效应,表面张力最低.  相似文献   
44.
高效氯氰菊酯微乳化复合表面活性剂体系的相行为及增溶   总被引:22,自引:0,他引:22  
【目的】评价阴离子与非离子表面活性剂复配使用在高效氯氰菊酯微乳化形成与稳定中的作用。【方法】利用微乳液拟三元相图,研究了不同高效氯氰菊酯油-水-复合表面活性剂体系的相行为和最大增溶量。【结果】采用阴离子表面活性剂农乳500#与非离子表面活性剂农乳400#以1/1、1/2、1/3复配,高效氯氰菊酯微乳剂拟三元相图中单相区和可对水无限稀释区面积均比表面活性剂单用明显增加,复合体系的最大增溶量也显著提高;与农乳400#单用相比,当二者以最佳比例1/2复配使用时,实现相同高效氯氰菊酯与油相质量分数的微乳化,配方中所需最低表面活性剂的质量分数由52.5%下降到11.5%。【结论】采用阴离子与非离子表面活性剂适当比例复配使用,可以降低农药制剂微乳化表面活性剂的用量、提高农药有效成分含量,从而提高农药微乳剂的质量和市场竞争力。  相似文献   
45.
农药液滴在靶标植物叶片表面的蒸发是农药对靶沉积后的重要过程,也是影响农药利用率和对有害生物防控效果的关键。液滴蒸发过程存在多种模式:接触半径恒定的CCR(Constant contact radius)模式、接触角恒定的CCA(Constant contact angle)模式以及混合模式(Mixed mode)等,不同蒸发模式下液滴的形态变化及蒸发时间均有一定差异。文章综述了液滴在光滑固体界面、人工修饰后具有不同微观结构的粗糙界面以及不同植物界面上的蒸发动力学研究进展。现有研究表明:在光滑固体界面上,液滴蒸发速率随蒸发时间呈线性变化趋势;在不同微观结构修饰后的粗糙界面上,液滴蒸发速率和蒸发模式受固体表面特性的影响;在不同植物界面上,叶片表面的微观结构与组分特性是影响农药液滴在叶片上沉积、持留、铺展及药液渗透过程的重要因素,富含蜡质层以及微纳米结构的叶片,一般不易被农药液滴润湿,液滴铺展面积小,蒸发相对较慢。通过加深对靶标植物叶片表面农药液滴蒸发行为的认知,可以根据有害生物为害特性与有效防控剂量需求,合理调控农药液滴在靶标植物叶面的蒸发时间,同时可为指导农药制剂中表面活性剂的合理应用及提高农药有效利用率提供理论依据。  相似文献   
46.
为快速表征新型表面活性剂在农药剂型加工中的主要功能,本研究通过测定几类国产高分子表面活性剂的临界胶束浓度及该浓度下的表面张力和润湿时间等性能,初步判断其适合作润湿剂还是分散剂;运用流点法确定了各助剂在多菌灵悬浮剂中的用量及配比;利用不同助剂类型及不同用量加工了多种50%多菌灵悬浮剂,并测定了其性能。结果表明:将润湿剂和分散剂按不同比例混合后,通过测定其流点来确定悬浮剂中助剂用量的方法是可行的;从对各制剂的性能测试结果可以看出,不管是用流点用量还是5倍流点用量,所选助剂多数可成功加工出合格试样。将性能较好的制剂按照农药登记推荐使用浓度稀释1 000倍后,测定其表面张力及在小麦叶片上的接触角和持液量,推断其田间使用情况。结果显示:药液因表面张力过大未能润湿小麦叶片,国产助剂与国外助剂差别不显著,甚至部分国产助剂的性能还优于国外助剂的;制备悬浮剂时将磺酸盐类与聚羧酸盐类分散剂配合使用效果较好。  相似文献   
47.
近年来,纳米技术的迅猛发展为现代植物保护开辟了新的应用前景。纳米乳剂作为一种新型纳米载药系统,具有较好的分散性和润湿性、粒径小以及缓释增效等优点,从而提高农药在靶标表面的附着、沉积和渗透,并有效提高农药利用率,减少农药使用量,降低环境风险。本文介绍了纳米乳剂的组成成分以及制备方法,综述了纳米乳剂在农药领域的研究及其应用进展,同时对目前有较大争议的关于纳米乳剂和微乳剂的界限进行了讨论,并对该领域发展前景进行了展望,可为制备性能优异的纳米乳剂提供参考。  相似文献   
48.
水稻叶片表面布满了绒毛、乳头状突起、蜡质等特殊结构,以及水稻叶片存在一定倾角,农药喷雾雾滴极易从叶面弹跳滚落,造成药剂浪费的同时污染土壤和地下水,并可能对非靶标生物造成严重危害。因此,有效提高农药喷雾雾滴在水稻叶片上的滞留和沉积对于提高农药有效利用率至关重要。本研究以叶酸和硝酸锌为原料,设计了一种负载噻呋酰胺的叶酸/Zn2+超分子水凝胶,具有生物相容性和可生物降解的优势,而且原材料来源丰富,制备过程简便易操作。叶酸是一种水溶性B族维生素,分子中含有喋呤啶、对氨基苯甲酸和谷氨酸结构,叶酸分子通过喋呤啶部分形成四聚体,四聚体通过π?π堆积形成纳米纤维,Zn2+交联纳米纤维形成水凝胶纤维网状结构。使用流变仪测定负载噻呋酰胺的叶酸/Zn2+超分子水凝胶的流变性能,发现叶酸和硝酸锌的比例会影响制备的凝胶的机械强度,且Zn2+的比例越高,形成的凝胶机械强度越强,其中在n(叶酸)/n(Zn2+) = 1/1.8~1/2.0比例范围内制备的凝胶适合于农药喷雾,凝胶具有剪切变稀和自修复的特性。通过超高速摄影技术对负载噻呋酰胺的叶酸/Zn2+超分子水凝胶调控液滴在水稻叶片上的沉积行为进行了研究,结果表明,凝胶液滴可在超疏水水稻叶片表面稳定沉积,不发生弹跳、碎裂和飞溅的现象。  相似文献   
49.
农药兑水茎叶喷施对靶沉积是一个复杂的剂量传递与分布过程,涉及制剂形成、药液配制、雾化分散、空间运行、叶面沉积和稳态持留等动态过程,受到药剂特性、环境因素、为害规律、植株形态和叶面结构等多因素影响,在水稻、小麦和玉米三大粮食作物上对靶沉积率为40.6%。其中,对不同区域、不同靶标作物种植体系中农药损失规律和高效利用机理研究与认识不足,是农药对靶沉积剂量传递效率低的主要原因之一。本文以农药向靶标作物及有害生物传递的过程行为为主线,将农药兑水茎叶喷施对靶沉积的剂量传递过程分解为雾滴空间运行、叶面动态沉积和稳态持留3个过程,从空间维度综述了各过程中的表观现象与行为、损失规律及其调控机制途径与技术等;从技术发展与进步角度,分析了农药对靶沉积剂量传递与调控研究和认知的发展思路,概述了典型代表性成果,提出了未来研究与发展建议。期望客观认知农药高效对靶沉积的损失规律与调控机制,探析主控过程与影响因子,提出农药减量施用调控方法、控制技术指标及功能助剂施用限量标准等,为农药减施增效关键技术与产品研发提供理论与技术支持。  相似文献   
50.
新农药创制研发周期长、成本高,而基于现有品种研发与优化农药剂型能够显著减少农药流失、提升防治效果、提高农药利用率,是我国农药“减施增效”的重要发展方向之一。在目前的农药剂型中,可分散油悬浮剂因具有环境友好、润湿铺展性好、抗冲刷能力强及增效作用明显等突出优势,已经成为未来最具发展潜力的农药剂型之一。本文从可分散油悬浮剂定义、特点、研究进展、配方构成和筛选建议等方面进行了综述,并对其未来的发展进行了展望,为可分散油悬浮剂或其他剂型的发展提供借鉴和理论指导。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号