首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   2篇
林业   5篇
基础科学   1篇
  35篇
综合类   4篇
畜牧兽医   8篇
园艺   1篇
植物保护   3篇
  2021年   1篇
  2018年   2篇
  2016年   2篇
  2013年   3篇
  2012年   6篇
  2011年   7篇
  2010年   1篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1961年   1篇
  1960年   1篇
  1953年   1篇
  1950年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
11.
12.
13.
The observed weakness of Mercury's magnetic field poses a long-standing puzzle to dynamo theory. Using numerical dynamo simulations, we show that it could be explained by a negative feedback between the magnetospheric and the internal magnetic fields. Without feedback, a small internal field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength saturated at a much lower level, compatible with the observations at Mercury. The classical saturation mechanism via the Lorentz force was replaced by the external field impact. The resulting surface field was dominated by uneven harmonic components. This will allow the feedback model to be distinguished from other models once a more accurate field model is constructed from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.  相似文献   
14.
Ureaform as a Slow Release Fertilizer: A Review   总被引:1,自引:0,他引:1  
Ureaform (UF) is a condensation product between urea and formaldehyde consisting of short chains from methylene-diurea to tetramethylenepentaurea. The rate of nitrogen release is mainly related to chain solubility. The mineralization of UF is governed by microbial activity. A wide spectrum of organisms is known to be involved. The degradation is mainly influenced by the biological fertility of the soil, temperature and to a limited degree by moisture, whereas pH and particle size have no pronounced effect. The importance of the activity index (A.I.) as a unit to evaluate the quality of an UF product and the versatility of the UF system in general are discussed. More recent trial results with UF products show the beneficial effects of the particular kind of slow release nitrogen fertilizer in meeting needs for improved fertility management and reduced pollution of drainage waters.  相似文献   
15.
The sphingolipid composition of food as well as of physiological samples has received considerable interest due to their positive biological activities. This study quantified the total amount of sphingomyelin (SM) in 20 human breast milk samples from healthy volunteers and determined the structures of SM by detailed mass spectrometric studies in combination with enzymatic cleavage. The quantification of SM was performed by hydrophilic interaction liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS) measuring the characteristic fragment ion of the phosphorylcholine group at m/z 184.2 and by using hexanoylsphingomyelin (C6-SM) and heptadecanoylsphingomyelin (C17-SM) as internal standards. The structures of SM species were identified after enzymatic cleavage with alkaline sphingomyelinase (SMase) to the corresponding ceramides. Structure elucidation of the sphingoid base and fatty acid backbone was performed by reversed-phase HPLC-ESI-MS/MS. The method includes the sphingoid bases dihydrosphingosine (d18:0), sphingosine (d18:1(Δ4)), 4,8-sphingadienine (d18:2(Δ4,8)), 4-hydroxysphinganine (phytosphingosine (t18:0)), and 4-hydroxy-8-sphingenine (t18:1(Δ8)) and fatty acids with even-numbered carbon atoms (C12-C26) as well as their (poly)unsaturated and monohydroxylated analogues. The total amount of SM in human breast milk varied from 3.87 to 9.07 mg/100 g fresh weight. Sphingosine (d18:1) was the predominant sphingoid base, with 83.6 ± 3.5% in human breast milk, followed by 4,8-sphingadienine (d18:2) (7.2 ± 1.9%) and 4-hydroxysphinganine (t18:0) (5.7 ± 0.7%). The main SM species contained sphingosine and palmitic acid (14.9 ± 2.2%), stearic acid (12.7 ± 1.5%), docosanoic acid (16.2 ± 3.6%), and tetracosenoic acid (15.0 ± 3.1%). Interestingly, the fatty acid composition of SM species in this study differs from the total fatty acids in human breast milk, and the fatty acids are not consistently distributed among the different sphingoid bases.  相似文献   
16.
17.
Procyanidins, as important secondary plant metabolites in fruits, berries, and beverages such as cacao and tea, are supposed to have positive health impacts, although their bioavailability is yet not clear. One important aspect for bioavailability is intestinal metabolism. The investigation of the microbial catabolism of A-type procyanidins is of great importance due to their more complex structure in comparison to B-type procyanidins. A-type procyanidins exhibit an additional ether linkage between the flavan-3-ol monomers. In this study two A-type procyanidins, procyanidin A2 and cinnamtannin B1, were incubated in the pig cecum model to mimic the degradation caused by the microbiota. Both A-type procyanidins were degraded by the microbiota. Procyanidin A2 as a dimer was degraded by about 80% and cinnamtannin B1 as a trimer by about 40% within 8 h of incubation. Hydroxylated phenolic compounds were quantified as degradation products. In addition, two yet unknown catabolites were identified, and the structures were elucidated by Fourier transform mass spectrometry.  相似文献   
18.
19.
As the bioavailability of flavonoids is influenced by intestinal metabolism, we have investigated the microbial deconjugation and degradation of several flavonols and flavonol glycosides using the pig cecum in vitro model system developed in our group. For this model system the microbiota was directly isolated from the cecal lumen of freshly slaughtered pigs. The characterization of the cecal microbiota by fluorescence in situ hybridization (FISH) with 16S rRNA-based oligonucleotide probes confirmed the suitability of the model system for studying intestinal metabolism by the human microbiota. We have investigated the microbial degradation of quercetin-3-O-beta-d-rutinoside 1, quercetin-3-O-beta-d-glucopyranoside 2, quercetin-4'-O-beta-d-glucopyranoside 3, quercetin-3-O-beta-d-galactopyranoside 4, quercetin-3- O-beta-d-rhamnopyranoside 5, quercetin-3- O-[alpha-l-dirhamnopyranosyl-(1-->2)-(1-->6)-beta-d-glucopyranoside 6, kaempferol-3-O-[alpha-l-dirhamnopyranosyl-(1-->2)-(1-->6)-beta-d-glucopyranoside 7, apigenin 8, apigenin-8- C-glucoside (vitexin) 9, and feruloyl-O-beta-d-glucopyranoside 10 (100 microM), representing flavonoids with different aglycones, sugar moieties, and types of glycosidic bonds. The degradation rate was monitored using HPLC-DAD. The flavonol O-glycosides under study were almost completely metabolized by the intestinal microbiota within 20 min and 4 h depending on the sugar moiety and the type of glycosidic bond. The degradation rates of the quercetin monoglycosides showed a clear dependency on the hydroxyl pattern of the sugar moiety. The degradation of 2 with all hydroxyl groups of the glucose in the equatorial position was the fastest. The intestinal metabolism of di- and trisaccharides was much slower compared to the monoglycosides. The structure of the aglycone has not much influence on the intestinal metabolism; however, the type of glycosidic bond ( C- or O-glycoside) has substantial influence on the degradation rate. The liberated aglycones were completely metabolized within 8 h. Phenolic compounds such as 3,4-dihydroxyphenylacetic acid 12, 4-hydroxyphenylacetic acid 13, and phloroglucinol 18 were detected by GC-MS as main degradation products.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号