首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16462篇
  免费   3篇
林业   3623篇
农学   1294篇
基础科学   137篇
  2731篇
综合类   711篇
农作物   2107篇
水产渔业   1788篇
畜牧兽医   1084篇
园艺   1110篇
植物保护   1880篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2018年   2745篇
  2017年   2703篇
  2016年   1179篇
  2015年   64篇
  2014年   17篇
  2013年   8篇
  2012年   791篇
  2011年   2126篇
  2010年   2101篇
  2009年   1255篇
  2008年   1314篇
  2007年   1575篇
  2006年   31篇
  2005年   99篇
  2004年   104篇
  2003年   156篇
  2002年   62篇
  2001年   9篇
  2000年   41篇
  1995年   1篇
  1993年   12篇
  1992年   7篇
  1990年   1篇
  1989年   5篇
  1988年   12篇
  1987年   1篇
  1983年   1篇
  1977年   4篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   8篇
  1967年   3篇
  1966年   1篇
  1965年   3篇
  1964年   2篇
  1963年   1篇
  1961年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
181.
Silk is very promising in the field of biomaterials as a natural biomacromolecule. Silk protein can be made into various forms of materials, including hydrogels. However, silk protein-based hydrogels have not attracted much attention due to its weak mechanical properties. Here, we report high water content silk protein-based hydrogels with tunable elasticity which were fabricated through Ru(II) mediated photochemically cross-linking tyrosine residues in regenerated silk protein. The regenerated silk protein was characterized by Fourier transform infrared spectroscopy (FTIR). The gelation kinetics of the silk protein was studied by rheology measurements. The compressive mechanical properties of the silk protein-based hydrogels was investigated using compressive tests and dynamic mechanical analysis (DMA). Compressive modulus of the hydrogels reached 349±64 MPa at 15 % strain. The fabricated silk protein-based hydrogels were also characterized by Scanning electron microscopy (SEM), revealing an interconnected porous network structure, typical of hydrogels, with an average pore size of approximately 130 μm. Finally, biocompatibility of the silk protein-based hydrogels was demonstrated through cell culture studies using a human fibroblast cell line, HFL1. The reported silk protein-based hydrogels represent a promising candidate for biomaterial applications.  相似文献   
182.
The pathogenicity of 10 bacterial isolates was investigated on potato, radish, carrot and beet, including sensitivity and pathogen control efficacy. The isolates were identified by morphological, biochemical and molecular methods. All isolates were pathogenic on radish, carrot, and beet, and were highly virulent on potato. Although the isolates were obtained from different locations in the El Fuerte Valley (Sinaloa, Mexico), they were similar in their morphological, physiological and biochemical characteristics. Sequences of the 16S rRNA gene obtained by PCR were identical for all isolates. These results indicate that the bacterial isolates from potato scabby tissue belong to S. acidiscabies. Furthermore, the effectiveness of fluazinam, both in vitro and under greenhouse and field conditions, represents a possibleoption for chemical control of potato common scab disease. While our results suggest that spraying at seeding is effective in controlling common scab, future studies to combine this treatment with seed dressing before planting will be conducted to determine if there is an increase in disease control.  相似文献   
183.
Removal of diseased plants (roguing) is commonly practiced in seed potato production. Diseased plants left to desiccate in fields could possibly serve as sources of Potato virus Y (PVY). PVY acquisition by three aphid species (Myzus persicae, Rhopalosiphum padi, Aphis fabae) was evaluated with leaflets from rogued plants for seven days. Results showed greater PVY acquisition rates in non-colonizing aphids species compared to colonizing ones. The proportion of aphids leaving leaflets increased with time (i.e. days after plants were uprooted) and some aphids were carrying PVY in their stylets on each of the seven days of the experiment, suggesting that aphids were able to probe and acquire PVY even when plants wilted. These results confirmed that diseased plants left in fields can serve as a source of PVY for aphids even after they wilted and emphasises that proper actions must be taken to efficiently remove diseased plants from fields.  相似文献   
184.
In the 2014 and 2015 crop seasons, the efficacies of different types, rates and combinations of mineral oil and insecticide foliar sprays for reducing Potato virus Y (PVY) spread were tested in controlled field trials in New Brunswick (NB), Canada. Experimental plots were planted with certified PVY-free Goldrush, supplemented with known virus-infected seed to raise PVY inoculum to 2.3% and 3% at the beginning of the 2014 and 2015 seasons, respectively. Treatments consisted of mineral oil-only sprays at different application rates, insecticide-only sprays of differing numbers, and several combined mineral oil and insecticide spray regimes, all compared to a no-spray control treatment. PVY spread to 18% (2014) and 22% (2015) of initially virus-free plants in no-spray control plots, with significant reductions observed in PVY spread in several treatments. Greatest PVY reductions, as low as 4% (2014) and 12% (2015), were in combined mineral oil and insecticide spray treatments, followed by oil-only sprays; while insecticide-only sprays did not significantly reduce PVY spread. As well as measuring PVY spread to marked test plants and randomly collected post-harvest tuber sample from the plots, exhibited similar treatment pattern for PVY incidence. Multiple logistic regression modeling confirmed the relative efficacy of combined oil and insecticide sprays for reducing PVY spread, while accounting for variable inoculum and aphid factors. Modeling also highlighted the importance of planting low-PVY seed initially, and of early application of foliar sprays. Local best management practice recommendations for reduction of in-field PVY spread were discussed.  相似文献   
185.
Improvement of both the tensile and impact strength of the same polymeric material has always been a great challenge for the plastic industry. The study focuses on the effect of incorporation of calcium carbonate nanoparticles (0.3 wt% to 15 wt%) into three polypropylene (PP) based matrices viz. PP homopolymer, propylene-ethylene (PP-PE) copolymer and the blend of PP:PP-PE (30:70) to improve their impact behavior without hampering the tensile strength much. A loss in both the tensile and impact properties was observed in PP based nanocomposite. However, PP-PE based nanocomposites showed a significant improvement in impact strength (47 %) at 10 wt% loading with a loss of tensile strength by 22 %. To minimize this loss a blend of PP:PP-PE (30:70) was explored as a matrix. At 10 wt% loading, this matrix showed an improvement of 30 % in impact strength whereas the tensile loss was minimized to 10 %. Further, silane coupling agent which promoted good interfacial adhesion was used for best compositions. The variation of crystalline morphology of the nanocomposites with various formulations was analyzed using differential scanning calorimetry and X-ray diffraction.  相似文献   
186.
This paper is about the degradation of polyvinyl alcohol (PVA) in aqueous solutions using a H2O2/Mn(II) system. Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC) were applied to analyze the degradation products of PVA, and the results revealed that the backbone chain of PVA could be effectively broken and oxidized. Several unsaturated degradation products, including carboxylic acids, ketones, aldehydes, olefins, and alkynes were also detected and identified by gas chromatography-mass spectrometry (GC-MS), which indicated that higher treatment temperatures would considerably promote the generation of lower molecular weight degradation products. According to the work presented in this paper, the degradation efficiency of PVA increased from 55 % at 60 oC to 99 % at 90 oC after treatment when the initial PVA concentration was 5 %, at pH=3 with a H2O2 and Mn(II) dose of 100 ml/l and 0.6 mol/l, respectively. In addition, kinetic modeling indicated that the experimental results were best fitted by the Page-modified model with an activation energy of 48.78 kJ/mol.  相似文献   
187.
The structures of disperse dyes and their intermolecular interactions have important impacts on dyeing and printing performances for polyester fabrics. The fluorine dyes show some unique molecular stability and photochemical properties. The dyeing property of the azo dye containing trifluoromethyl group for polyester fabrics, 4'-(N-acetoxyethyl-Nethyl)- amino-2-bromine-4-nitro-6-trifluoromethylazo- benzene (D1), was investigated and compared with the similar structure disperse dye. The results show that the high color yield and good exhaustion of the dyed PET fabrics could be obtained. The polyester fabrics dyed with D1 had excellent light fastness. Its single crystal was prepared and the supramolecular interactions were solved by X-ray diffraction. Dye D1 formed triclinic crystals in a trimeric packing mode. The C-F bond distances of CF3 are 1.2730 Å, 1.2240 Å and 1.2900 Å, respectively. The two benzene rings linked azo unit (-N=N-) are obviously twist. The dihedral angle of the two benzene rings is 50.23 o. There are six weak hydrogen bonds around trifluoromethyl group in the intramolecule and intermolecule. The excellent light stability of the dye should be attributed to its unique supramolecular structure.  相似文献   
188.
Cellulose nanocrystals (CNC) with high aspect ratio of 80 have been readily prepared from the inexpensive fruit shell of Camellia oleifera Abel (SCOA) for the first time. In this study, SOCA was consecutively subjected to alkali extraction, hydrogen peroxide bleaching and acid hydrolysis to remove non-cellulosic components and release CNC. The derived CNC possesses a needle-shaped structure that in average diameter and length of 6±2 nm and 500±100 nm, respectively. The crystallinity index of CNC increased to 72 % and the initial decomposition temperature raised to 230 oC. The obtained CNC was formed to nanopaper by vacuum filtration showing high visible light transmittance over 90 %. Thus SOCA derived CNC is of great practical potential to apply in the field of biomedicine, energy, packing, etc. Overall, this study is anticipated to offer new possibility for the CNC production from the inexpensive but abundant agricultural wastes.  相似文献   
189.
A water and dye-free heat treatment method was used to color wool fibers. The heat effect changed wool fibers to different colors from white in a nitrogen atmosphere. The influences of heating temperature and time on the colors of wool were investigated and the mechanical property of colored wool fibers was evaluated. The color strength of wool fibers increased as heat treatment temperature and time increased. The tensile strength retention rate of wool fiber was relatively high (≥90 %) when the heat temperature was below 200 °C. The surface morphologies of wool fibers scarcely changed during the heat treatment. The carbon content of fibers was found to reduce by heat treatment, indicating oxidization of components in the wool fibers in the process of coloration. Heat treatment may provide a water and dye-free approach to color wool and other textile fibers, albeit within a limited color range.  相似文献   
190.
In this paper, the orthogonal experimental method was carried out to optimize the curing process of aeronautical composite X850/T800 in autoclave process. Four important curing parameters including curing pressure, heating rate, curing temperature and heat preservation time were taken into account, and sixteen samples were fabricated to study the effects of the four parameters mentioned above on the curing quality by interlaminar properties test and microstructure analysis. The interlaminar properties and the interfacial bonding quality of these samples were studied by the short-beam three points bending test and scanning electron microscopy, respectively. Results revealed that the optimal curing process of X850/T800 composite laminate should be as follows: curing pressure of 0.6 MPa, heating rate of 1.5 °C/min, curing temperature of 160 °C, and heat preservation time of 120 min.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号