首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16578篇
  免费   14篇
林业   3631篇
农学   1301篇
基础科学   138篇
  2783篇
综合类   716篇
农作物   2140篇
水产渔业   1800篇
畜牧兽医   1095篇
园艺   1114篇
植物保护   1874篇
  2022年   12篇
  2021年   15篇
  2020年   12篇
  2019年   11篇
  2018年   2757篇
  2017年   2717篇
  2016年   1196篇
  2015年   69篇
  2014年   24篇
  2013年   33篇
  2012年   805篇
  2011年   2139篇
  2010年   2105篇
  2009年   1257篇
  2008年   1328篇
  2007年   1576篇
  2006年   31篇
  2005年   99篇
  2004年   101篇
  2003年   150篇
  2002年   58篇
  2001年   4篇
  2000年   41篇
  1995年   1篇
  1993年   12篇
  1992年   7篇
  1990年   1篇
  1989年   5篇
  1988年   11篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1977年   4篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.

Purpose

Chemical protection facilitates soil organic carbon (SOC) sequestration and stabilisation due to a strong chemical binding with mineral surfaces and metal ions (e.g. iron [Fe], aluminium [Al] and calcium [Ca]). However, there is not much information regarding the role of chemical protection in SOC stabilisation in paddy soils, particularly in terms of the specific forms of organo-mineral complexes such as Fe-, Al- and Ca-bonded OC.

Materials and methods

We sampled paddy soils at the 0–20 cm soil layer from a long-term field experiment (initiated in 1981) conducted under humid subtropical conditions in China, which has five fertilisation treatments (i.e. control treatment without fertiliser [CK], chemical fertiliser only [CF], green manure [GM], Straw and Manure) with equivalent nutrient inputs (i.e. N, P2O5 and K2O at the rates of 135–67.5–135 kg ha?1, respectively, for both early and late rice) except CK. We determined the chemical binding forms of SOC and the associated soil properties in the particulate fraction (PF, >53 μm) and the mineral-associated fraction (MAF, <53 μm), which were obtained using a low-energy ultrasonic dispersion procedure, of a paddy soil in the long-term fertilisation experiment.

Results and discussion

Iron- and Al-bonded OC (Fe/Al-OC) was the dominant fraction and made up 55–70% of the total SOC in the paddy soil, while Ca-bonded OC (Ca-OC) was only a minor fraction (<4%). The Fe/Al-OC was mainly allocated in the MAF (52–67%), indicating that the chemical protection of SOC occurred mostly in the finer particle fractions. Long-term application of organic amendments increased the contents of bulk SOC by 27–34% (P < 0.05), of Fe/Al-OC by 9–16% and of Ca-OC by 35–83% (P < 0.05), whereas the sole application of chemical fertiliser had no significant effects on SOC contents of the paddy soil compared with the treatment without fertiliser inputs. Both amorphous Fe and Al extracted by ammonium oxalate (Feox and Alox) showed significant correlations with Fe/Al-OC (r = 0.52 and 0.78, respectively), but Alox appeared to have a greater influence on C stabilisation in the paddy soil.

Conclusions

These results demonstrated that the dominant chemical binding forms of SOC in the paddy soils were Fe/Al-OC and amorphous Fe/Al oxyhydrates, especially amorphous Al, contributed mostly to the chemical stabilisation of SOC.
  相似文献   
82.
Soil nitrogen (N) loss related to surface flow and subsurface flow (including interflow and groundwater flow) from slope lands is a global issue. A lysimetric experiment with three types of land cover (grass cover, GC; litter cover, LC; and bare land, BL) were carried out on a red soil slope land in southeast China. Total Nitrogen (TN) loss through surface flow, interflow and groundwater flow was observed under 28 natural precipitation events from 2015 to 2016. TN concentrations from subsurface flow on BL and LC plots were, on average, 2.7–8.2 and 1.5–4.4 times greater than TN concentrations from surface flow, respectively; the average concentration of TN from subsurface flow on GC was about 36–56% of that recorded from surface flow. Surface flow, interflow and groundwater flow contributed 0–15, 2–9 and 76–96%, respectively, of loss load of TN. Compared with BL, GC and LC intercepted 83–86% of TN loss through surface runoff; GC intercepted 95% of TN loss through subsurface flow while TN loss through subsurface flow on LC is 2.3 times larger than that on BL. In conclusion, subsurface flow especially groundwater flow is the dominant hydrological rout for N loss that is usually underestimated. Grass cover has the high retention of N runoff loss while litter mulch will increase N leaching loss. These findings provide scientific support to control N runoff loss from the red soil slope lands by using suitable vegetation cover and mulching techniques.  相似文献   
83.
A highly effective zirconium-modified activated sludge (Zr(IV)-AS) adsorbent was prepared from activated sludge and applied to remove phosphate from aqueous solutions by batch and column experiments. Characterized results revealed that zirconium was successfully loaded onto the activated sludge (AS), and the specific surface area and pore volume were substantially improved after zirconium loading on the AS. Zr(IV)-AS exhibited a high adsorption affinity for phosphate and the maximum adsorption amount was 27.55 mg P·g?1 at 25 °C. Adsorption isotherms of phosphate could be described by the Langmuir model, and the adsorption kinetics were well described by the pseudo-second-order model. Phosphate adsorption on Zr(IV)-AS increased monotonically with decreasing solution pH. The presence of SO42? in water resulted in slightly decreased phosphate adsorption on the adsorbent even at a high concentration (25 mmol/L), and a greater influence of HCO3? on adsorption could be ascribed to the increased solution pH with the addition of the HCO3?. Column adsorption experimental results showed that the adsorbent has excellent phosphate adsorption properties and that the effluent can meet the requirement of phosphorus in the national wastewater discharge standard of China. Phosphate-saturated Zr(IV)-AS can be effectively desorbed in 0.1 mol L?1 NaOH solution, and the regenerated adsorbent still possessed the high capacity. The adsorption between the adsorbent and the phosphate is due to the electrostatic interaction and anionic exchange at the surface of the Zr(IV)-AS. Furthermore, this approach provides a possibility of treating wastewater with waste and has the potential for industrial applications for the removal of phosphate from wastewater.  相似文献   
84.

Purpose

The study aimed at comparing the effects of different water managements on soil Cd immobilization using palygorskite, which was significant for the selection of reasonable water condition.

Materials and methods

Field experiment was taken to discuss the in situ remediation effects of palygorskite on Cd-polluted paddy soils, under different water managements, using a series of variables, including pH and extractable Cd in soils, plant Cd, enzyme activity, and microorganism number in soils.

Results and discussion

In control group, the pH in continuous flooding was the highest under three water conditions, and compared to conventional irrigation, continuous flooding reduced brown rice Cd by 37.9%, and brown rice Cd in wetting irrigation increased by 31.0%. In palygorskite treated soils, at concentrations of 5, 10, and 15 g kg?1, brown rice Cd reduced by 16.7, 44.4, and 55.6%; 13.8, 34.5, and 44.8%; and 13.1, 36.8, and 47.3% under continuous flooding, conventional irrigation, and wetting irrigation (p < 0.05), respectively. The enzyme activity and microbial number increased after applying palygorskite to paddy soils.

Conclusions

Continuous flooding was a good candidate as water management for soil Cd stabilization using palygorskite. Rise in soil enzyme activity and microbial number proved that ecological function regained after palygorskite application.
  相似文献   
85.
Background:Immobilization is an approach in industry to improve stability and reusability of urease. The efficiency of this technique depends on the type of membrane and the method of stabilization. Methods:The PEI-modified egg shell membrane was used to immobilize urease by absorption and glutaraldehyde cross-linking methods. The membranes were characterized by FTIR and AFM, and Nessler method was applied to measure the kinetic of the immobilized enzymes. Finally, the storage stability (6 °C for 21 days) and reusability (until enzyme activity reached to zero) of the immobilized enzymes were investigated. Results:Based on FTIR, three new peaks were observed in both the absorption- (at 1389.7, 1230.8, and 1074.2 cm-1) and the cross-linking (at 1615-1690, 1392.7, 1450 cm-1) immobilized enzymes. The surface roughness of the native membrane was altered after PEI treatment and enzyme immobilization. The optimal pH of cross-linking immobilized enzymes was shifted to a more neutral pH, while it was alkaline in adsorption-immobilized and free enzymes. The reaction time decreased in all immobilized enzymes (100 min for free enzyme vs. 60 and 30 min after immobilizing by adsorption and cross-linking methods, respectively). The optimal temperature for all enzymes was 70 °C and they had a higher Km and a lower Vmax than free enzyme. The stability and reusability of urease were improved by both methods. Conclusion:Our findings propose these approaches as promising ways to enhance the urease efficiency for its applications in industries and medicines. Key Words: Egg shell, Immobilization, Polyethylenimine, Urease  相似文献   
86.
Chickpea is the most important pulse crop globally after dry beans. Climate change and increased cropping intensity are forcing chickpea cultivation to relatively higher temperature environments. To assess the genetic variability and identify heat responsive traits, a set of 296 F8–9 recombinant inbred lines (RILs) of the cross ICC 4567 (heat sensitive) × ICC 15614 (heat tolerant) was evaluated under field conditions at ICRISAT, Patancheru, India. The experiment was conducted in an alpha lattice design with three replications during the summer seasons of 2013 and 2014 (heat stress environments, average temperature 35 °C and above), and post-rainy season of 2013 (non-stress environment, max. temperature below 30 °C). A two-fold variation for number of filled pods (FPod), total number of seeds (TS), harvest index (HI), percent pod setting (%PodSet) and grain yield (GY) was observed in the RILs under stress environments compared to non-stress environment. A yield penalty ranging from 22.26% (summer 2013) to 33.30% (summer 2014) was recorded in stress environments. Seed mass measured as 100-seed weight (HSW) was the least affected (6 and 7% reduction) trait, while %PodSet was the most affected (45.86 and 44.31% reduction) trait by high temperatures. Mixed model analysis of variance revealed a high genotypic coefficient of variation (GCV) (23.29–30.22%), phenotypic coefficient of variation (PCV) (25.69–32.44%) along with high heritability (80.89–86.89%) for FPod, TS, %PodSet and GY across the heat stress environments. Correlation studies (r = 0.61–0.97) and principal component analysis (PCA) revealed a strong positive association among the traits GY, FPod, VS and %PodSet under stress environments. Path analysis results showed that TS was the major direct and FPod was the major indirect contributors to GY under heat stress environments. Therefore, the traits that are good indicators of high grain yield under heat stress can be used in indirect selection for developing heat tolerant chickpea cultivars. Moreover, the presence of large genetic variation for heat tolerance in the population may provide an opportunity to use the RILs in future-heat tolerance breeding programme in chickpea.  相似文献   
87.
Plants of white clover (Trifolium repens L.) cultivar Crau, a self-fertile Crau genotype, and nine generations of inbred progeny were raised in sand culture in a glasshouse experiment. Digital images of the root systems were made and root morphological characteristics were determined on all the plants. Root architectural parameters were measured on the Crau parent and the S1, S4, S6, and S9 inbred lines. The clover roots became shorter and thicker with inbreeding but the number of root tips per plant was unchanged. Root architecture (branching pattern) was largely unaffected by inbreeding. It is concluded that inbreeding white clover will lead to shorter, thicker roots, and reduced nutrient uptake efficiency compared with the parent clover. The degree to which these deleterious traits are overcome during the development of F1 hybrids needs to be determined.  相似文献   
88.
The mechanism that controls the proportion of cannabichromene (CBC), a potential pharmaceutical, in the cannabinoid fraction of Cannabis sativa L. is explored. As with tetrahydrocannabinol (THC) and cannabidiol (CBD), CBC is an enzymatic conversion product of the precursor cannabigerol (CBG). CBC is reported to dominate the cannabinoid fraction of juveniles and to decline with maturation. This ontogeny was confirmed in inbred lines with different mature chemotypes. A consistent CBC presence was found in early leaves from a diverse clone collection, suggesting that CBC synthase is encoded by a fixed locus. Morphological variants possessing a ‘prolonged juvenile chemotype’ (PJC), a substantial proportion of CBC persisting up to maturity, are presented. PJC is associated with a reduced presence of floral bracts, bracteoles, and capitate-stalked trichomes. Genetic factors causing these features were independent of the allelic chemotype locus B that was previously postulated and regulates THC and CBD synthesis and CBG accumulation. In contrast to previously described Cannabis chemotypes, the cannabinoid composition of PJCs showed plasticity in that reduced light levels increased the CBC proportion. The ability of PJC plants to enable the production of pharmaceutical raw material with high CBC purity is demonstrated.  相似文献   
89.
A major factor affecting spring canola (Brassica napus) production in Canada is killing frosts during seedling development in the spring and seed maturation in the fall. The objective of this study was to explore the possibility of producing spring canola lines with mutations that have altered biochemical pathways that increase cold tolerance. The approach was to generate UV point mutations in cultured microspores followed by chemical in vitro selection of individual mutant microspores or embryos resulting in measurable alterations to various biochemical pathways with elevated levels of key defense signaling molecules such as, salicylic acid (SA), p-Fluoro-d,l-Phenyl Alanine (FPA), and jasmonic acid (JA). In addition, since proline (Pro) is known to protect plant tissues in the cold-induced osmotic stress pathway, mutants that overproduce Pro were selected in vitro by using three Pro analogues: hydroxyproline (HP), azetidine-2-carboxylate (A2C); and, 3,4-dehydro-d,l-proline (DP). Of the 329 in vitro selected mutant embryos produced, 74 were identified with significant cold tolerance compared to their donor parents through indoor freezer tests at −6°C, and 19 had better winter field survival than winter canola checks. All chemically selected mutant doubled haploids with increased cold tolerance compared well with parent lines for all seed quality and agronomic parameters. Development of increased frost tolerant cultivars should allow for spring canola to be produced in western Canada without compromising seed quality.  相似文献   
90.
Approximately 7,000 accessions of Korean soybean (Glycine max (L.) Merrill) landraces, largely composed of three collections, the Korea Atomic Energy Research Institute’s soybean (KAS), the Korean Crop Experiment Station’s soybean (KLS) and the Korean Agricultural Development and Technology Center’s soybean (KADTC) collections, have been conserved at the Rural Development Administration (RDA) genebank in Korea. The accessions within collections were classified based on their traditional uses such as sauce soybean (SA), sprouted soybean (SP), soybean for cooking with rice (SCR), and OTHERS. A total of 2,758 accessions of Korean soybean landraces were used to profile and to evaluate genetic structure using six SSR loci. A total of 110 alleles were revealed by at the six SSR loci. The number of alleles per SSR locus ranged from 9 to 39 in Satt187 and Satt_074, respectively. The number of alleles ranged from 87 in the KADTC collection to 96 in the KLS collection, and from 63 in the SCR group to 95 in the SP group. Nei’s average genetic diversity ranged from 0.68 to 0.70 across three collections, and 0.64 to 0.69 across the usage groups. The average between-group differentiation (G st) was 0.9 among collections, and 4.1 among the usage groups. The similar average diversity among three collections implies that the genetic background of the three collections was quite similar or that there were a large number of duplicate accessions in three collections. The selection from the four groups classified based upon usage may be a useful way to select accessions for developing a Korean soybean landrace core collection at the RDA genebank. DNA profile information of accessions will provide indications of redundancies or omissions and aid in managing the soybean collection held at the RDA genebank. The information on diversity analysis could help to enlarge the genetic diversity of materials in breeding programs and could be used to develop a core collection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号