首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3744篇
  免费   370篇
  国内免费   13篇
林业   308篇
农学   147篇
基础科学   21篇
  652篇
综合类   182篇
农作物   240篇
水产渔业   546篇
畜牧兽医   1584篇
园艺   94篇
植物保护   353篇
  2023年   40篇
  2022年   80篇
  2021年   184篇
  2020年   204篇
  2019年   249篇
  2018年   237篇
  2017年   245篇
  2016年   198篇
  2015年   140篇
  2014年   187篇
  2013年   258篇
  2012年   286篇
  2011年   296篇
  2010年   152篇
  2009年   155篇
  2008年   195篇
  2007年   172篇
  2006年   121篇
  2005年   94篇
  2004年   91篇
  2003年   93篇
  2002年   96篇
  2001年   66篇
  2000年   54篇
  1999年   27篇
  1998年   19篇
  1997年   11篇
  1996年   16篇
  1995年   13篇
  1994年   10篇
  1993年   5篇
  1992年   13篇
  1991年   8篇
  1990年   11篇
  1989年   11篇
  1988年   9篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   7篇
  1983年   8篇
  1981年   6篇
  1980年   6篇
  1979年   6篇
  1976年   3篇
  1975年   3篇
  1973年   3篇
  1970年   2篇
  1969年   3篇
  1948年   2篇
排序方式: 共有4127条查询结果,搜索用时 109 毫秒
31.
It is well reported in the scientific literature that pastures can have similar net forage accumulation when managed with contrasting structures. However, we hypothesized that the dynamics of forage accumulation in grazed swards is linked to seasonal-environmental conditions. Marandu palisadegrass (Brachiaria brizantha [Hochst. ex A. Rich.] was used as the forage species model. The experimental treatments were four grazing heights (10, 20, 30 and 40 cm) allocated to experimental units according to a randomized complete block design with four replicates and evaluated throughout four contrasting environmental seasons (summer, autumn, winter–early spring and late spring). Under rainy and warm periods, greater net forage accumulation was observed in pastures maintained taller; on the contrary, during the mild and dry periods, net forage accumulation rate reduced as grazing height increased. Such patterns of responses were related to compensations between tiller population density and tissues flows during summer and late spring and the reduced capacity of taller canopies to compensate lower population with greater growth rates during autumn and winter–early spring. Grazed swards changed their patterns of forage growth as they transitioned from favourable to more abiotic stressful conditions, suggesting that seasonal adjustments in grazing intensities are necessary in order to maximize forage production.  相似文献   
32.
The palm ruff, Seriolella violacea (Cojinoba), is a potential new species for Chilean aquaculture. To approach Cojinoba larviculture, an experimental Artemia enrichment emulsion, containing docosahexaenoic acid (DHA)/eicosapentaenoic acid (EPA) = 2.5, supplemented with vitamin E, astaxanthin, and β‐glucan, was evaluated in both Artemia and Cojinoba larvae, 30–50 d.a.h. This study tested an experimental enrichment emulsion versus a commercial emulsion, with an integral approach of multicompound emulsions. After 23 h enrichment, experimental emulsion (EE)‐enriched nauplii reached DHA and EPA concentrations of 23.8 and 18.7 mg/g dry weight (dwt), respectively, while in Cojinoba larvae they were 18.4 and 19.7 mg/g dwt. Control emulsion (CE)‐enriched nauplii exhibited lower DHA and EPA (6.1 and 7.7 mg/g dwt), while only DHA decreased in the control larvae (12.6 mg/g dwt). Vitamin E was higher in EE‐enriched nauplii (29.2 mg/100 g dwt) than in the control (8.4 mg/100 g dwt). Larvae fed EE‐enriched Artemia exhibited 8% increase in survival and 19% in growth compared with the control. Astaxanthin was detected only in larvae fed EE‐enriched nauplii. The tumor necrosis factor‐α concentration was not significantly different between larvae fed EE‐ and CE‐enriched nauplii. EE looks promising as an Artemia enrichment and experimental diet to assess palm ruff larval requirements, and has a positive impact on fish larvae performance.  相似文献   
33.
34.
35.
36.
37.
Nitrogen fertilization is a common practice for sustaining forage production in forage systems in southeastern United States. Warm-season annual legumes may be an alternative forage to warm-season perennial grasses that do not require N fertilization. Sunn hemp (Crotalaria juncea L.) is a fast-growing, warm-season annual legume native to India and Pakistan. The objective of this 2-year study was to assess the herbage accumulation (HA), atmospheric N2 fixation (ANF) and nutritive value of sunn hemp. Treatments were the factorial arrangement of two sunn hemp cultivars (“Crescent Sun” and “Blue Leaf”), three seeding rates (17, 28 and 39 kg seed/ha) and seed inoculation (inoculated or non-inoculated seeds), distributed in a randomized complete block design with four replicates. Crescent sun had greater HA (3,218 vs. 1764 kg DM/ha) and ANF (41 vs. 25 kg N/ha). Blue leaf had greater crude protein (CP) (188 vs. 176 g/kg) and in vitro digestible organic matter (IVDOM) concentrations (564 vs. 531 g/kg) than crescent sun. Non-inoculated seed had greater CP than inoculated seed, 188 and 177 g/kg, respectively, and inoculation did not affect HA. Intermediate seeding rate (28 kg/ha) decreased HA (2002 kg DM/ha), while HA from high and low seeding rates (17 and 39 kg/ha, respectively) did not differ (2,863 and 2,615 kg DM/ha respectively). Planting non-inoculated crescent sun at 17 kg/ha seeding rate is a feasible management practice to produce sunn hemp in subtropical regions; however, inoculation should always be recommended for proper establishment.  相似文献   
38.
Soil compaction impacts growing conditions for plants: it increases the mechanical resistance to root growth and modifies the soil pore system and consequently the supply of water and oxygen to the roots. The least limiting water range (LLWR) defines a range of soil water contents within which root growth is minimally limited with regard to water supply, aeration and penetration resistance. The LLWR is a function of soil bulk density (BD), and hence directly affected by soil compaction. In this paper, we present a new model, ‘SoilFlex‐LLWR’, which combines a soil compaction model with the LLWR concept. We simulated the changes in LLWR due to wheeling with a self‐propelled forage harvester on a Swiss clay loam soil (Gleyic Cambisol) using the new SoilFlex‐LLWR model, and compared measurements of the LLWR components as a function of BD with model estimations. SoilFlex‐LLWR allows for predictions of changes in LLWR due to compaction caused by agricultural field traffic and therefore provides a quantitative link between impact of soil loading and soil physical conditions for root growth.  相似文献   
39.
Sugarcane management systems affect soil attributes such as the carbon cycle. This fact has stimulated the sugar and alcohol industry to refine the sugarcane production systems by replacing the pre-harvest burning (PB) and manual harvest with mechanized harvesting followed by residue deposition. The aim of this study was to evaluate different management systems with respect to C cycling carbon dioxide and soil parameters (chemical, physical and biological) which were determined over the season. Three sugarcane cultivation systems were evaluated at the following periods: (a) PB, (b) 5-year green harvest and (c) 10-year green harvest. The results indicated that CO2 emission was 36% greater in the 10-year sugarcane green harvest system than in the PB system. The bulk density and macroporosity were the factors that were most affected by the different sugarcane management systems and that significantly influenced soil CO2 emissions. The principal component analysis showed that soil CO2 emission was 18% influenced by base saturation (V%) and 14% by pH, especially in the PB area. Additionally, 19% was affected by carbon and macroporosity in the 5- and 10-year green harvest areas, respectively. From our results, it can be concluded that the most CO2 emissions are in the areas of sugarcane green, this is due to the higher carbon concentration when compared with the area of burning sugarcane. The parameters that most influenced the CO2 emissions were bulk density, porosity, macroporosity, pH and V%.  相似文献   
40.
The aim of this study was to identify possible effects of different vaccination strategies (concomitantly or not) against brucellosis and clostridia on intake, performance, feeding behavior, blood parameters, and immune responses of dairy heifers calves. Fifty heifers calves were enrolled [38 Gyr (Zebu, Bos taurus indicus) and 12 5/8 Holstein Gyr]. At 120 d of age, animals were randomly distributed among 3 groups: B (n = 18), vaccinated against brucellosis; C (n = 14), vaccinated against clostridia and CB (n = 18), vaccinated concomitantly for both. Rectal and thermographic temperatures were evaluated on days 1, 0, 1, 2, 3, 5, 7,10, 14, and 28 relatives to the vaccination day. Feed and water intake, body weight (BW), and feeding behavior were monitored daily by an electronic feeding system. Blood was sampled on days 0, 3, 7, 14, and 28, relative to the vaccination day for determination of glucose and -hydroxybutyrate (BHBA) concentrations. Blood sampled on day 0 (prevaccination) and on days 28 and 42 were used to evaluate the immune response against Brucella abortus and clostridia. There was an increase in rectal temperature between the first and the third day postvaccination in the 3 groups. The thermography revealed an increase of local temperature for 7 d on groups B and CB. Group C had increased local temperature for a longer period, lasting for up to 14 d. Dry mater intake was reduced for groups B and CB, but no alteration was observed for group C. No alterations regarding initial BW, final BW, average daily weight gain, and feed efficiency were observed. No differences were observed for the 3 vaccination groups for blood parameters throughout the evaluation period. The concomitant vaccination against brucellosis and clostridia led to lower neutralizing antibody titers against epsilon toxin of Clostridium perfringens and botulinum toxin type C of C. botulinum (C > CB > B). When cellular proliferation assay and serological tests to B. abortus were evaluated, no differences were observed between groups B and CB. The present results indicate that the concomitant vaccination against brucellosis and clostridia has no relevant impact on the intake, performance, and feeding behavior of dairy calves. However, the concomitant vaccination of vaccines against these 2 pathogens impacts animal immunity against clostridial infections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号