首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16579篇
  免费   3篇
  国内免费   1篇
林业   3638篇
农学   1301篇
基础科学   138篇
  2759篇
综合类   712篇
农作物   2103篇
水产渔业   1800篇
畜牧兽医   1154篇
园艺   1112篇
植物保护   1866篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   2745篇
  2017年   2705篇
  2016年   1183篇
  2015年   68篇
  2014年   24篇
  2013年   16篇
  2012年   795篇
  2011年   2132篇
  2010年   2105篇
  2009年   1255篇
  2008年   1325篇
  2007年   1597篇
  2006年   48篇
  2005年   112篇
  2004年   103篇
  2003年   160篇
  2002年   62篇
  2001年   13篇
  2000年   48篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1995年   1篇
  1993年   14篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   11篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1979年   1篇
  1977年   5篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1969年   1篇
  1968年   4篇
  1967年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
201.
Sodium adsorption ratio (SAR) is one of the water quality indexes that whose is important due to reuse or depletion to environment. Solutes in drain water can be controlled by adsorption, chemical or biological reaction, organic envelope of drainage. Rice husk is the common option of drainage envelops in paddy fields. In this study, the ability of reduction of SAR by rice husk was evaluated in batch scale and physical model of drain envelops. In the batch experiments, the adsorption of SAR parameters was investigated by adding 2 g of rice husk into a 100 ml of sodium chloride solution. The results indicated that rice husk absorbed calcium, magnesium and sodium, respectively. By increasing the temperature, contact time and pH, adsorption of calcium, magnesium and sodium was increased; however, the higher concentration of sodium in soil solution reduced the percentage of adsorption. In a more realistic state, physical models of subsurface drainage in the paddy fields were made. Drainage envelope treatments included of rice husk (H), combination of 20 and 60 % of husk with gravel (H20G80 and H60G40) and a pipe without envelope (NE). Due to higher drain discharge and more sodium removal (lower SAR in drain water), treatment H with the discharge of 16.2 ml/min and SAR of 1.27 (meq/l)0.5 was better in comparison with other treatments.  相似文献   
202.
203.
Paddy fields are subjected to fluctuating water regimes as a result of the alternate drying and wetting water management, which often incurs a sensitive change in N2O emissions from paddy soils. However, how the soil moisture regulates the emission of N2O from paddy soil remains uncertain. In this study, three incubation experiments were designed to study the effects of constant and fluctuating soil moisture on N2O emission and the sources of N2O emission from paddy soil. Results showed that the N2O emission from paddy soil at 100 % WHC (water-holding capacity) was higher than that at 40, 65, 80, 120, and 160 % WHC, indicating that 100 % WHC was the optimum soil moisture content for N2O emission under the incubation experiment. Small peak of N2O flux appeared when the soil moisture content from 250 % WHC decreased near to 100 % WHC, lower than that triggered by nitrogen (N) fertilization, which was mainly owing to the low NH4 + concentration at this period. Nitrification dominated the emissions of N2O from paddy soil at 250 % WHC (54.96 %), higher than that of nitrification-coupled denitrification (6.74 %) and denitrification (38.3 %). The contribution of denitrification to N2O emissions (44.10 %) was equivalent to that of nitrification (44.45 %) in soil at 100 % WHC, which was higher than that of 250 % WHC treatment. In conclusion, the finding suggested that the peak of N2O in paddy soils during midseason aeration could be attributed to the occurrence of optimum soil moisture under sufficient N availability, favorable for the production and accumulation of N2O.  相似文献   
204.
Based on data collected from rice fields under drying–wetting cycle condition, the procedure of dual-crop coefficient (K cd) approaches was calibrated and validated to reveal its feasibility and improve its performance in rice evapotranspiration (ET c) estimation. It was found that K cd based on FAO-recommended basal crop coefficients (K cb) underestimated dual-crop coefficients in monsoon climate region in East China. The recommended coefficient (K cp) value of 1.2 was not high enough to reflect the pulse increase of rice ET c after soil wetting. The K cb values were calibrated as 1.52 and 0.63 in midseason and late season, and the K cp value was adjusted as 1.29 after soil wetting in rice field under drying–wetting cycle condition. The dual-crop coefficient curves based on locally calibrated K cbCal and K cpCor matched well with the measured crop coefficients and performed well in calculating rice evapotranspiration from paddy fields under drying–wetting cycle condition. So it can be concluded that the procedure of dual-crop coefficient method is feasible in rice ET c estimation, and locally calibrated K cb and K cp can improve its performance remarkably.  相似文献   
205.
Rhizosphere microbes play a cardinal role in transformation and crop uptake of arsenic (As), thereby relieving or intensifying the risk of As contamination in the food webs. How rhizosphere microbiomes respond to As contamination in different paddy soils and rice growth stages is still unclear. Here, we conducted a rice pot experiment to address the effects of rice developmental stage and As contamination on the rhizosphere microbial communities in two contrast paddy soils, a yellow clayey paddy soil (YP, pH 5.1, soil organic matter 20.8 g/kg) and red paddy soil (RP, pH 6.2, soil organic matter 46.1 g/kg). The rhizosphere microbial communities were investigated using phospholipid fatty acids analysis at tillering, panicle initiation, and maturity stages. The results showed that rice growing in YP soil accumulated 2-10 times higher contents of As in root than that in RP soil. There was a significant effect of rice growing stage, independent of soil types and As treatment, on rhizosphere microbial community composition in both YP and RP soils as depicted by canonical correspondence analysis. As contamination significantly altered rhizosphere microbial community composition only in YP soil, which showed the soil type dependency of the As contamination effect. In RP soil, the higher content of soil organic matter reduced the impact of As contamination. Soil pH explained more percentage of variation in microbial community composition than soil DOC and DON did. These influences of soil physiochemical properties on heavy metal available and rhizosphere microbial community may lay the foundation for exploration of bioremediation potential.  相似文献   
206.
Fecal DNA samples from the red-eared slider and Reeves’ pond turtle, suspected pests of lotus root paddies, were used to identify the plant species eaten by these turtles in order to develop a strategy for rural ecosystem conservation. The fecal samples were obtained from young and adult individuals (mostly female) of both species living in agricultural canals surrounding lotus root paddies in Tokushima Prefecture, Japan. The samples were screened for the presence or absence of DNA from nine plant species using PCR and plant species-specific primers for the rbcL gene of chloroplast DNA. In the red-eared slider, our analysis identified seven plant species in the fecal DNA samples of adults and three plant species in those of young individuals. In Reeves’ pond turtle, our analysis identified two plant species from adult fecal samples and one species from those of young individuals. Thus, adult red-eared sliders consume a greater range of plants than young red-eared sliders or Reeves’ pond turtles. Both turtle species, independently of age, consumed lotus plants and were likely to cause feeding damage to lotus roots. Considering the plant species detected in adult red-eared sliders and these plant habitats, we suggest that this adult turtle is likely to travel between the agricultural canals and the lotus root paddies. These findings will help the development of strategies for preventing damage to lotus roots by these turtles; furthermore, they indicate that fecal DNA analysis will be applicable to investigation of the feeding habits of other animal species.  相似文献   
207.
Weeds caused serious problem on yield reduction of basmati rice worldwide. Losses caused by weeds varied from one country to another, depending on the presence of dominant weeds and the control methods practiced by farmers; therefore, suitable plant population and weed management practices should be adopted. Keeping these in mind, a field experiment was carried out during kharif seasons of 2009 and 2010 at crop Research Centre of SVPUA&T, Meerut, India comprising 4 planting geometries, viz. 20, 30, 40, and 50 hills m?2 as main plot factor, and 5 weed management practices (Butachlor @ 1.0 kg ha?1, Butachlor @ 1.0 kg ha?1 fb (followed by) one hand weeding, Butachlor @ 1.0 kg ha?1 fb Almix @ 4 g ha?1, two hand weedings and weedy check) in a split plot design with 3 replications. Experimental results revealed that plant population of 50 hills m?2 proved superior over that of 20 hills m?2 in respect of weed density, weed dry weight, number of tillers m?2, yield attributes, grain, straw, and biological yields. The maximum grain yield (29.00 and 31.00 q ha?1) and straw yield (51.30 and 52.50 q ha?1) were recorded in 50 hills m?2 followed by 40 hills m?2 during 2009 and 2010, respectively. In respect of nitrogen, phosphorus, and potassium removal, a reverse trend was observed: the highest in 20 hills m?2 followed by 30, 40, and 50 hills m?2. As far as the weed management practices are concerned, both chemical and mechanical methods of weed control were found superior over weedy check. The lowest weed density, dry weight, and highest weed control efficiency, maximum length of panicle?1, number of panicle (m2), and 1000-grain weight and grain yield of 30.40 and 32.60 q ha?1 were recorded with two hand weedings which was at par with Butachlor @ 1.0 kg ha?1 fb one hand weeding over rest of the weed management practices.  相似文献   
208.

Background

Salinity is one of the most severe and widespread abiotic stresses that affect rice production. The identification of major-effect quantitative trait loci (QTLs) for traits related to salinity tolerance and understanding of QTL × environment interactions (QEIs) can help in more precise and faster development of salinity-tolerant rice varieties through marker-assisted breeding. Recombinant inbred lines (RILs) derived from IR29/Hasawi (a novel source of salinity) were screened for salinity tolerance in the IRRI phytotron in the Philippines (E1) and in two other diverse environments in Senegal (E2) and Tanzania (E3). QTLs were mapped for traits related to salinity tolerance at the seedling stage.

Results

The RILs were genotyped using 194 polymorphic SNPs (single nucleotide polymorphisms). After removing segregation distortion markers (SDM), a total of 145 and 135 SNPs were used to construct a genetic linkage map with a length of 1655 and 1662 cM, with an average marker density of 11.4 cM in E1 and 12.3 cM in E2 and E3, respectively. A total of 34 QTLs were identified on 10 chromosomes for five traits using ICIM-ADD and segregation distortion locus (SDL) mapping (IM-ADD) under salinity stress across environments. Eight major genomic regions on chromosome 1 between 170 and 175 cM (qSES1.3, qSES1.4, qSL1.2, qSL1.3, qRL1.1, qRL1.2, qFWsht1.2, qDWsht1.2), chromosome 4 at 32 cM (qSES4.1, qFWsht4.2, qDWsht4.2), chromosome 6 at 115 cM (qFWsht6.1, qDWsht6.1), chromosome 8 at 105 cM (qFWsht8.1, qDWsht8.1), and chromosome 12 at 78 cM (qFWsht12.1, qDWsht12.1) have co-localized QTLs for the multiple traits that might be governing seedling stage salinity tolerance through multiple traits in different phenotyping environments, thus suggesting these as hot spots for tolerance of salinity. Forty-nine and 30 significant pair-wise epistatic interactions were detected between QTL-linked and QTL-unlinked regions using single-environment and multi-environment analyses.

Conclusions

The identification of genomic regions for salinity tolerance in the RILs showed that Hasawi possesses alleles that are novel for salinity tolerance. The common regions for the multiple QTLs across environments as co-localized regions on chromosomes 1, 4, 6, 8, and 12 could be due to linkage or pleiotropic effect, which might be helpful for multiple QTL introgression for marker-assisted breeding programs to improve the salinity tolerance of adaptive and popular but otherwise salinity-sensitive rice varieties.
  相似文献   
209.

Background

Fixed arrays of single nucleotide polymorphism (SNP) markers have advantages over reduced representation sequencing in their ease of data analysis, consistently higher call rates, and rapid turnaround times. A 6 K SNP array represents a cost-benefit “sweet spot” for routine genetics and breeding applications in rice. Selection of informative SNPs across species and subpopulations during chip design is essential to obtain useful polymorphism rates for target germplasm groups. This paper summarizes results from large-scale deployment of an Illumina 6 K SNP array for rice.

Results

Design of the Illumina Infinium 6 K SNP chip for rice, referred to as the Cornell_6K_Array_Infinium_Rice (C6AIR), includes 4429 SNPs from re-sequencing data and 1571 SNP markers from previous BeadXpress 384-SNP sets, selected based on polymorphism rate and allele frequency within and between target germplasm groups. Of the 6000 attempted bead types, 5274 passed Illumina’s production quality control. The C6AIR was widely deployed at the International Rice Research Institute (IRRI) for genetic diversity analysis, QTL mapping, and tracking introgressions and was intensively used at Cornell University for QTL analysis and developing libraries of interspecific chromosome segment substitution lines (CSSLs) between O. sativa and diverse accessions of O. rufipogon or O. meridionalis. Collectively, the array was used to genotype over 40,000 rice samples. A set of 4606 SNP markers was used to provide high quality data for O. sativa germplasm, while a slightly expanded set of 4940 SNPs was used for O. sativa X O. rufipogon populations. Biparental polymorphism rates were generally between 1900 and 2500 well-distributed SNP markers for indica x japonica or interspecific populations and between 1300 and 1500 markers for crosses within indica, while polymorphism rates were lower for pairwise crosses within U.S. tropical japonica germplasm. Recently, a second-generation array containing ~7000 SNP markers, referred to as the C7AIR, was designed by removing poor-performing SNPs from the C6AIR and adding markers selected to increase the utility of the array for elite tropical japonica material.

Conclusions

The C6AIR has been successfully used to generate rapid and high-quality genotype data for diverse genetics and breeding applications in rice, and provides the basis for an optimized design in the C7AIR.
  相似文献   
210.

Background

The rice Pi2/9 locus harbors multiple resistance (R) genes each controlling broad-spectrum resistance against diverse isolates of Magnaporthe oryzae, a fungal pathogen causing devastating blast disease to rice. Identification of more resistance germplasm containing novel R genes at or tightly linked to the Pi2/9 locus would promote breeding of resistance rice cultivars.

Results

In this study, we aim to identify resistant germplasm containing novel R genes at or tightly linked to the Pi2/9 locus using a molecular marker, designated as Pi2/9-RH (Pi2/9 resistant haplotype), developed from the 5′ portion of the Pi2 sequence which was conserved only in the rice lines containing functional Pi2/9 alleles. DNA analysis using Pi2/9-RH identified 24 positive lines in 55 shortlisted landraces which showed resistance to 4 rice blast isolates. Analysis of partial sequences of the full-length cDNAs of Pi2/9 homologues resulted in the clustering of these 24 lines into 5 haplotypes each containing different Pi2/9 homologues which were designated as Pi2/9-A5, ?A15, ?A42, ?A53, and -A54. Interestingly, Pi2/9-A5 and Pi2/9-A54 are identical to Piz-t and Pi2, respectively. To validate the association of other three novel Pi2/9 homologues with the blast resistance, monogenic lines at BC3F3 generation were generated by marker assisted backcrossing (MABC). Resistance assessment of the derived monogenic lines in both the greenhouse and the field hotspot indicated that they all controlled broad-spectrum resistance against rice blast. Moreover, genetic analysis revealed that the blast resistance of these three monogenic lines was co-segregated with Pi2/9-RH, suggesting that the Pi2/9 locus or tightly linked loci could be responsible for the resistance.

Conclusion

The newly developed marker Pi2/9-RH could be used as a potentially diagnostic marker for the quick identification of resistant donors containing functional Pi2/9 alleles or unknown linked R genes. The three new monogenic lines containing the Pi2/9 introgression segment could be used as valuable materials for disease assessment and resistance donors in breeding program.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号