首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3863篇
  免费   188篇
  国内免费   218篇
林业   180篇
农学   199篇
基础科学   28篇
  659篇
综合类   1396篇
农作物   206篇
水产渔业   357篇
畜牧兽医   611篇
园艺   57篇
植物保护   576篇
  2024年   13篇
  2023年   61篇
  2022年   74篇
  2021年   112篇
  2020年   133篇
  2019年   140篇
  2018年   112篇
  2017年   158篇
  2016年   190篇
  2015年   164篇
  2014年   202篇
  2013年   374篇
  2012年   321篇
  2011年   292篇
  2010年   247篇
  2009年   201篇
  2008年   156篇
  2007年   207篇
  2006年   181篇
  2005年   149篇
  2004年   112篇
  2003年   98篇
  2002年   82篇
  2001年   73篇
  2000年   78篇
  1999年   55篇
  1998年   70篇
  1997年   38篇
  1996年   34篇
  1995年   37篇
  1994年   18篇
  1993年   19篇
  1992年   10篇
  1991年   16篇
  1990年   7篇
  1989年   9篇
  1988年   8篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1955年   1篇
排序方式: 共有4269条查询结果,搜索用时 15 毫秒
91.
柠檬酸对西瓜幼苗铝毒害的缓解作用   总被引:1,自引:0,他引:1  
孙远秀  邱爽  张伟伟  郑阳霞 《核农学报》2016,(10):2072-2079
为了探究柠檬酸对西瓜幼苗铝毒害的缓解作用,本试验采用水培法,以早春红玉(耐铝型,HY)和早蜜王(铝敏感型,ZM)2个西瓜品种为材料,用不同柠檬酸浓度(200、400、800、1 200μmol·L~(-1))处理铝胁迫(1 500μmol·L~(-1))下的西瓜幼苗,研究不同柠檬酸浓度对西瓜幼苗生长和生理特性的影响。结果表明,铝胁迫对HY和ZM幼苗的生长和生理均产生了明显的毒害作用,与HY相比,ZM受毒害的程度更大。加入柠檬酸后,铝对HY和ZM的毒害作用得到了有效的缓解,且缓解效果存在浓度差异,在一定浓度范围内(≤800μmol·L~(-1)),随着柠檬酸浓度增加缓解效果增强,其中以800μmol·L~(-1)效果最佳;当浓度增至1 200μmol·L~(-1)时,缓解效果反而减弱。柠檬酸对ZM的缓解作用强于HY,同时随着处理时间的延长柠檬酸缓解效果越明显。综上所述,柠檬酸能够有效缓解铝对西瓜幼苗的毒害作用,以400~800μmol·L~(-1)解毒效果最佳。本研究结果为明确柠檬酸缓解西瓜铝毒害作用机制以及西瓜优质高产栽培提供了理论依据。  相似文献   
92.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   
93.
Soil structure is determined by the arrangement of particles in soil and the particles of sand, silt, and clay bind together into aggregates of various sizes by organic and inorganic materials. Structural stability which is the ability of the aggregates and pores to remain intact when subjected to stress, markedly affects crop production and soil erosion (Tisdall 1996). Since water, either directly as rainfall or as surface runoff is the main agent of aggregate breakdown, in the analyzes of stable soil aggregation, the term water-stable aggregation is generally used (Lynch and Bragg 1985). Water-stable aggregates have been divided into micro aggregates < 0.25 mm dia.) and macro aggregates (> 0.25 mm dia.) (Edwards and Bremner 1967; Tisdall and Oades 1982). Microaggregates show a relatively high stability against physical disruption (Edwards and Bremner 1967). On the other hand, macro aggregates are sensitive to soil management (Tisdall and Oades 1982).

There are many reports on the relationships between the aggregate stability and the soil physicochemical properties. For example, significant correlations were found between the aggregate stability and the amounts of organic C (Tisdall and Oades 1982), total N, and carbohydrates or the CEC (Chaney and Swift 1984). However, most of these studies were conducted in non-volcanic ash soils. Volcanic ash soils are widely distributed in Japan and are very important soils for crop production. The objective of this study was, therefore, to obtain more information on the relationship between the degree of macro aggregation and the soil physicochemical properties in non-volcanic and volcanic ash soils.  相似文献   
94.
用一氧化氮供体硝普钠(sodium nitroprusside,SNP)处理铝胁迫下的黑麦和小麦幼苗,探讨铝胁迫和铝胁迫下外源NO对黑麦和小麦根尖细胞壁铝吸附的影响。结果表明:铝显著抑制黑麦和小麦根的伸长生长,小麦受抑制更为严重;SNP处理可缓解铝对黑麦和小麦根伸长生长的抑制作用,1 mmol/L SNP处理最有效。小麦根尖对铝的吸附量和吸附速率显著高于黑麦的,1 mmol/L SNP处理显著降低小麦和黑麦细胞壁对铝的吸附量,使根尖铝含量显著下降。铝与根尖细胞壁的结合是导致植物铝毒害的重要原因,而降低根尖细胞壁对铝的吸附是外源NO缓解铝毒害的重要机制。  相似文献   
95.
低分子量有机酸对促进可变电荷土壤中铝溶解的影响   总被引:7,自引:2,他引:7  
Low-molecular-weight (LMW) organic acids exist widely in soils and play an important role in soil processes such as mineral weathering, nutrient mobilization and A1 detoxification. In this research, a batch experiment was conducted to examine the effects of LMW organic acids on dissolution of aluminum in two variably charged soils, an Ultisol and an Oxisol. The results showed that the LMW organic acids enhanced the dissolution of A1 in the two investigated soils in the following order: citric 〉 oxalic 〉 malonic 〉 malic 〉 tartaric 〉 salicylic 〉 lactic 〉 maleic. This was generally in agreement with the magnitude of the stability constants for the Al-organic complexes. The effects of LMW organic acids on Al dissolution were greater in the Ultisol than in the Oxisol as compared to their controls. Also, the accelerating effects of citric and oxalic acids on dissolution of A1 increased with an increase in pH, while the effects of lactic and salicylic acids decreased. Additionally, when the organic acid concentration was less than 0.2 mmol L-I, the dissolution of A1 changed Iittle with increase in acid concentration. However, when the organic acid concentration was greater than 0.2 mmol L^-1,the dissolution of A1 increased with increase in acid concentration. In addition to the acid first dissociation constant and stability constant of Al-organic complexes, the promoting effects of LMW organic acids on dissolution of A1 were also related to their sorption-desorption equilibrium in the soils.  相似文献   
96.
The effects of B and Ca treatments on root growth, nutrient localization and cell wall properties in wheat ( Triticum aestivum L.) plants with and without Al stress were investigated. Seedlings were grown hydroponically in a complete nutrient solution for 7 d and then treated with B (0, 40 μM), Ca (0, 2,500 μM), and Al (0, 100 μM) in a 500 μM CaCl2 solution for 8 d. The cell wall materials (CWM) were extracted with a phenol: acetic acid: water (2:1:1 w/v/v) solution and used for subsequent pectin extraction with trans -1,2-diami-nocyclohexane- N,N,N,N -tetraacetic acid (CDTA) and Na2CO3 solutions. Boron, Ca, and B + Ca treatments enhanced root growth by 19.5, 15.2, and 27.2%, respectively, compared to the control (pH 4.5). Calcium and B+Ca treatments enhanced root growth with Al stress by 43 and 54%, respectively, while B did not exert any effect. The amounts of CWM and pectin per unit of root fresh weight increased by Al treatment, whereas the Ca and B+Ca treatments slightly reduced the contents of these components. Seventy-four percent of total B, 69% of total Ca, and 85% of total Al were located in the cell wall in the B, Ca, and Al treatments, respectively and 32% of total B, 33% of total Ca, and 33% of total Al were located in the CDTA-soluble and Na2CO3-soluble pectin fractions. A more conspicuous localization of B was observed in the presence of Al. Aluminum treatment markedly decreased the Ca content in the cell wall as well as pectin fractions, mainly in the case of the CDTA-soluble pectin fraction. Boron + Ca treatment decreased the Al content in the cell wall and pectin fractions compared to the Ca treatment alone in the presence of Al. It is concluded that the B+Ca treatment enhanced root growth and, B and Ca uptake, and helped to maintain a normal B and Ca metabolism in the cell walls even in the presence of Al.  相似文献   
97.
In 12th century, the Buddhist priest Eisai brought tea ( Camellia sinensis L.) seeds to Japan from China and now tea plants are cultivated all over Japan except in the Hokkaido and Tohoku districts. The quality (reflected in the price) of Japanese green tea is affected by the nitrogen content. Consequently in tea fields, for last three decades large amounts of fertilizer have been applied to produce high quality tea. As a result, problems such as acidification of soil have been caused. It is also known that the growth of tea plants is stimulated by the addition of aluminum (Al) under acidic conditions. In this keynote address, some problems caused by excess applications of fertilizer in tea fields and the growth characteristics of tea plants related to Al are presented.  相似文献   
98.
Common bean (Phaseolus vulgaris L.) proved to be very sensitive of low pH (4.3), with large genotypic differences in proton sensitivity. Therefore, proton toxicity did not allow the screening of common bean genotypes for aluminium (Al) resistance using the established protocol for maize (0.5 mM CaCl2, 8 μM H3BO3, pH 4.3). Increasing the pH to 4.5, the Ca2+ concentration to 5 mM, and addition of 0.5 mM KCl fully prevented proton toxicity in 28 tested genotypes and allowed to identify differences in Al resistance using the inhibition of root elongation by 20 μM Al supply for 36 h as parameter of Al injury. As in maize, Al treatment induced callose formation in root apices of common bean. Aluminium‐induced callose formation well reflected the effect of Ca supply on Al sensitivity as revealed by root‐growth inhibition. Aluminum‐induced callose formation in root apices of 28 bean genotypes differing in Al resistance after 36 h Al treatment was positively correlated to Al‐induced inhibition of root elongation and Al contents in the root apices. However, the relationship was less close than previously reported for maize. Also, after 12 h Al treatment, callose formation and Al contents in root apices did not reflect differences in Al resistance between two contrasting genotypes, indicating a different mode of the expression of Al toxicity and regulation of Al resistance in common bean than in maize.  相似文献   
99.
通过急性毒性试验测定了不同培养条件下Pb对蚯蚓的毒害作用,并通过牛粪、砖红壤培养试验,测定了蚯蚓对Pb的忍耐性,及不同形态Pb对蚯蚓体重的影响。研究结果如下:蚯蚓在在液、沙、泥土和干牛粪中的急性半致死剂量(LD50)分别为354.41 mg/kg、360.95 mg/kg、1228.02 mg/kg和3894.62 mg/kg。蚯蚓在腐熟牛粪中对Pb有很好的忍耐性,当牛粪中Pb含量达到15000 mg/kg时蚯蚓依然能够生存。蚯蚓在Pb污染砖红壤生活60d后回收率和体重均有下降,在土壤Pb含量分别为400 mg/kg和444 mg/kg时蚯蚓的回收率和增长率下降最快,分别为0.6403和-0.4358。限制蚯蚓增长的程度大小Pb形态依次为:碳酸盐结合态>交换态>有机态>无定形氧化锰结合态>晶形氧化铁结合态>无定形氧化铁结合态>残渣态  相似文献   
100.
大麦耐铝毒机制的研究进展   总被引:1,自引:0,他引:1  
王华  陶跃之 《中国农学通报》2008,24(11):247-250
铝离子对根系的毒害是酸性土壤中农作物生产的主要限制因子。大麦在所有禾本科农作物中对铝离子毒害最为敏感。耐铝毒性在大麦品种间存在变异,遗传分析表明在大麦第4染色体长臂上有一个主效基因(Alp)控制大麦对铝毒的抗性。本文总结了最近几年关于大麦耐铝毒机理的研究进展,特别是大麦耐铝毒基因Alp的克隆及其功能分析,并对禾本科其它农作物中相关耐铝毒基因的研究进行了比较。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号