首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   9篇
  国内免费   18篇
林业   4篇
农学   14篇
基础科学   11篇
  69篇
综合类   26篇
农作物   11篇
水产渔业   1篇
畜牧兽医   5篇
园艺   1篇
植物保护   30篇
  2024年   3篇
  2023年   2篇
  2022年   7篇
  2021年   4篇
  2020年   4篇
  2019年   6篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   7篇
  2014年   6篇
  2013年   23篇
  2012年   15篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   5篇
  2002年   5篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
41.
为筛选出适合陇东旱塬区种植的优质高产玉米品种,于2019年在甘肃庆阳对12个玉米品种的农艺性状和抗逆性(倒伏率、对茎腐病的抗性)等进行了田间比较。结果表明,供试12个玉米品种在当地均可正常成熟,生育期为128~143 d。产量以先玉1321最高,为15 400.5 kg/hm2;新玉108次之,为14 785.5 kg/hm2;兴贮88居第3位,为14 448.0 kg/hm2。在抗逆性方面,九圣禾2468、新玉108、陕单650、迪卡519、松科106、兴贮88倒伏率均为0,表现出良好的抗倒伏性;九圣禾2468、新玉108和陇单9号对茎腐病表现出良好的抗性。从农艺性状和抗性等综合考虑,新玉108、九圣禾2468和兴贮88表现最佳,适宜在陇东旱塬区种植。  相似文献   
42.
ABSTRACT

Poor response of rice to phosphorus (P) fertilization and low phytoavailability of soil P have been reported in sandy rainfed fields in northeast Thailand. In order to evaluate the effects of mild soil drying on the uptake of P by rainfed lowland rice, we carried out nutrient omission trials for nitrogen (N) and P at Ubon Ratchathani Rice Research Center under rainfed and flooded conditions. The surface soil was classified as sandy loam. To avoid severe soil drying and drought stress in the rainfed field, soil water potential at a depth of 20 cm was maintained at the field capacity (> ?20 kPa) by flush irrigation. The effects of flooding and drying on the soil properties were also evaluated in the laboratory using soils with diverse textures in and around the center. In the field experiments, the above-ground biomass of rice plants (RD6) did not respond significantly to P fertilization in the rainfed field, although it responded positively to N fertilization. Root length in the surface 10 cm under the rainfed condition was significantly smaller than that under the flooded condition due partly to the increased soil hardness upon drying, but this could not quantitatively explain the large discrepancy of P uptake observed between the rainfed and flooded conditions. Under the rainfed condition, the P uptake did not increase significantly, even when the concentration of soil Bray P was tripled by transferring the surface soil from the flooded to the rainfed field. From the laboratory experiments, it was further suggested that soil P was supplied mainly by diffusion and that the effective diffusion coefficient for P can become less than one-tenth of the value in the flooded field when the sandy soil with clay at around 10% dried to ?100 kPa. Our results suggest that the uptake of P by the rainfed lowland rice grown in sandy soil can be limited physically by mild soil drying that reduces the supply of P to roots by diffusion rather than the chemical extractability of soil P.  相似文献   
43.
田间微集雨技术研究及应用   总被引:22,自引:6,他引:16  
过去30 a,田间微集雨技术逐渐发展成为黄土高原雨养农业区的主要耕作技术。自上世纪八十年代以来,不同田间微集雨及覆盖(地膜、砂石和秸秆)栽培技术在黄土高原不断更新换代,先后经历了垄沟无覆盖技术、平地覆盖技术、垄沟半覆盖技术和垄沟全覆盖技术等发展过程,特别是沟垄地膜全覆盖技术大面积推广和应用,为西北旱区粮食单产大幅度提高提供了强大的支撑作用。本文综述了田间微集雨技术的演变历程及对农田生态系统的影响及机理,归纳了垄沟和覆盖模式及播种方式对作物产量形成、水分利用效率、作物生理生态、土壤质量、土壤微生物、杂草、病虫害、覆盖物残留和作物物候等的影响,并分析了该技术的高产高效和生态风险以及两者的互作关系。文章最后还对该技术的高效性、可持续性和发展潜力进行了讨论,旨在对雨养农业生态系统的可持续管理提供理论指导。  相似文献   
44.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   
45.
Soils in the hot, arid topical regions are low in organic matter and fertility and are structurally poor. Consequently, these soils suffer on account of poor physical, chemical, and biological soil quality traits, leading to miserably low crop yields. Long-term use of conjunctive nutrient management and conservation tillage practices may have a profound effect on improving the quality of these soils. Therefore, the objective of this study was to identify the key soil quality indicators, indices, and the best soil- and nutrient-management practices that can improve soil quality on long-term basis for enhanced productivity under a pearl millet–based system. The studies were conducted for the Hissar Centre of All-India Coordinated Research Project at the Central Research Institute for Dryland Agriculture, Hyderabad. Conjunctive nutrient-use treatments and conservation tillage significantly influenced the majority of the soil quality parameters in both the experiments. In experiment 1, the key soil quality indicators that significantly contributed to soil quality in a rainfed pearl millet–mung bean system were available nitrogen (N, 35%), available zinc (Zn; 35%), available copper (Cu; 10%), pH (10%), available potassium (K; 5%), and dehydrogenase assay (5%). The three best conjunctive nutrient-use treatments in terms of soil quality indices (SQI) were T3, 25 kg N (compost) (1.52) > T6, 15 kg N (compost) + 10 kg N (inorganic) + biofertilizer (1.49) > T5, 15 kg N (compost) + 10 kg N (green leaf manure) (1.47). In experiment 2, under a rainfed pearl millet system, the key indicators and their percentage contributions were electrical conductivity (15%), available N (19%), exchangeable magnesium (Mg; 18%), available manganese (Mn; 13%), dehydrogenase assay (19%), microbial biomass carbon (C; 5%), and bulk density (11%). The three best tillage + nutrient treatments identified from the viewpoint of soil quality were T1, conventional tillage (CT) + two intercultures (IC) + 100% N (organic source/compost) (1.74) > T3, CT + two IC + 100% N (inorganic source) (1.74) > T4, low tillage + two IC + 100% N (organic source/compost) (1.70). The findings of the present study as well as the state-of-the-art methodology adopted could be of much interest and use to the future researchers including students, land managers, state agricultural officers, growers/farmers, and all other associated stakeholders. The prediction function developed between long-term pearl millet crop yields (y) and soil quality indices (x) in this study could be of much use in predicting the crop yields with a given change in soil quality index under similar situations.  相似文献   
46.
Alarming climate change, rainfed upland farming, and low resource-use efficiency of conventional fertilizer management practices are major production constraints detrimental to rice productivity in the northwestern (NW) Himalayas. Recent agronomic intervention of direct-seeded rice (DSR) coupled with suitable rice germplasm well suited to rainfed upland ecosystems in combination with appropriate integrated nutrient-management (INM) technology can enhance the rice productivity in the region. Thus, a field experiment with seven treatments replicated three times in a randomized block design was conducted on INM technology in rainfed upland rice cv. HPR-1156 (Sukaradhan-1) to harness the potential of DSR technology in order to boost rice productivity in the NW Himalayas. Results on INM in direct-seeded upland rice revealed that nitrogen, phosphorus, and potassium (NPK) at 90:45:45 kg ha?1 + farm yard manure (FYM) at 5 t ha?1 (oven dry-weight basis) significantly resulted in the greatest magnitude of growth and development (plant height, tillers m?2) and yield-contributing characters (panicles m?2, panicle length, grains panicle?1 and 1000-grain weight), resulting in significantly greatest grain, straw, and biological yield followed by sole use of NPK at 90:45:45 kg ha?1 and NPK at 60:30:30 kg ha?1 + FYM at 5 t ha?1, respectively, in rainfed upland rice. Application of NPK at 90:45:45 kg ha?1 + FYM at 5 t ha?1 again resulted in significant improvement in soil organic carbon and available NPK status over other treatments and initial soil fertility status in an acidic Alfisol. Overall, it is inferred that INM technology with judicious use of NPK at 90:45:45 kg ha?1 + FYM at 5 t ha?1 in rainfed upland rice under DSR technology can enhance the rice productivity and resource-use efficiency in NW Himalayas.  相似文献   
47.
Varalu is an early maturing rice variety widely grown in the rainfed ecosystem preferred for its grain type and cooking quality. However, the yield of Varalu is substantially low since it is being affected by reproductive drought stress along with the blast disease. The genetic improvement of Varalu was done by introgressing a major yield QTL, qDTY12.1, along with two major blast resistance genes i.e. Pi54 and Pi1 through marker-assisted backcross breeding. Both traits were transferred till BC2 generation and intercrossing was followed to pyramid the two traits. Stringent foreground selection was carried out using linked markers as well as peak markers (RM28099, RM28130, RM511 and RM28163) for the targeted QTL (qDTY12.1), RM206 for Pi54 and RM224 for Pi1. Extensive background selection was done using genome-wide SSR markers. Six best lines (MSM-36, MSM-49, MSM-53, MSM-57, MSM-60 and MSM-63) having qDTY12.1 and two blast resistance genes in homozygous condition with recurrent parent genome of 95.0%-96.5% having minimal linkage drag of about 0.1 to 0.7 Mb were identified. These lines showed yield advantage under drought stress as well as irrigated conditions. MSM-36 showed better performance in the national coordinated trials conducted across India, which indicated that improved lines of Varalu expected to replace Varalu and may have an important role in sustaining rice production. The present study demonstrated the successful marker-assisted pyramiding strategy for introgression of genes/QTLs conferring biotic stress resistance and yield under abiotic stress in rice.  相似文献   
48.
不同施氮水平对旱地兰州百合养分累积与氮肥利用的影响   总被引:3,自引:2,他引:1  
在兰州市七里河区西果园大田条件下,研究了在施用磷肥150 kg/hm2和钾肥225 kg/hm2基础上,不同施氮水平(0,75,150 和 225 kg/hm2)对旱地兰州百合干生物量、养分累积动态及氮肥利用的影响,旨在揭示兰州百合需肥规律,为其规范化栽培提供依据。结果表明,适宜施氮量可促进兰州百合植株生长,提高鳞茎养分的转化吸收效率。鳞茎氮磷钾养分吸收不同步,累积量依次为K>N>P。施氮量只影响鳞茎干生物量和养分的阶段累积量,不改变其累积动态趋势。随施氮量的增加,鳞茎产量、氮累积量和氮肥利用率均有不同程度地提高,施氮量为150 kg/hm2时三者均最高,分别达(8 982.1±845.8) kg/hm2,(29.123±1.767) kg/hm2和(4.97±2.16)%。当施氮量达225 kg/hm2时各指标均下降。施氮量为75 kg/hm2时氮肥效率最大,为(107.36±11.21)%,此后随氮肥量的增加氮肥效率极显著下降。综合考虑各因素,建议兰州百合基肥的施氮量应为75~150 kg/hm2。  相似文献   
49.
于2012—2014年在宁南旱塬区布设旱地冬小麦垄膜沟播试验,研究了集雨种植模式下不同施肥水平对小麦不同生育阶段土壤水分、产量和水肥利用率的影响。试验设置集雨(R)和传统平作(B)两种种植模式,每种种植模式设置高(N+P:270+180 kg·hm~(-2))、中(N+P:180+120 kg·hm~(-2))、低(N+P:90+60 kg·hm~(-2))和不施肥4种施肥水平。结果表明:集雨种植模式在冬小麦生育前期可以显著提高0~200 cm土层的土壤贮水量,两年的平均产量较平作提高了10.57%(P0.05),水分利用效率提高了3.83%,肥料农学效率提高了54.99%(P0.05)。施肥对冬小麦生育期土壤水分有明显影响,冬小麦生育前期随着施肥量的增加土壤贮水量呈增加趋势,生育后期土壤贮水量随着施肥量的增加而减少。无论是集雨还是平作种植模式,各施肥处理的冬小麦经济产量和水分利用效率随着施肥量的增加呈增加趋势,但相邻肥力梯度间增幅随施肥量的增加逐渐降低,高肥处理虽产量和水分利用效率最高,但较中肥处理增产幅度不显著(P0.05),集雨种植中肥处理的肥料农学效率最高,两年平均为3.91 kg·kg~(-1)。由此认为,集雨种植模式配合中量施肥(N+P:180+120 kg·hm~(-2))可显著提高半干旱区旱作冬小麦产量及水肥利用效率。  相似文献   
50.
A long-term experiment was conducted to evaluate the effect of integrated use of organic and inorganic sources of nutrients on soil quality and its relation to finger millet yield under two predominant crop rotations viz., groundnut–finger millet and finger millet monocropping in hot moist semiarid rainfed Alfisol soils in South India. Two experiments were laid out separately for each cropping system in a randomized complete block design with five treatments individually with FYM and maize residue-based combinations viz., Control (T1), FYM @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 (T2), farm yard manure (FYM) @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 + 50% RDF (Recommended Fertiliser Dose) N, P2O5 &; K2O (T3), FYM @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 + 100% RDF N,P2O5 &; K2O (T4), Recommended N, P2O5 &; K2O (T5). Thus, four sets of nutrient management systems were evaluated. The results showed that farm yard manure or maize residue application in combination with recommended dose of fertilizer significantly improved the soil physical, chemical, and biological properties compared to control and application of inorganic fertilizers alone. Based on evaluation of 19 soil quality parameters under each of the four nutrient management systems, the common key soil quality indicators emerged out were: organic C (OC), available nitrogen (N), available sulfur (S), and mean weight diameter (MWD) of soil aggregates. A significant correlation between the finger millet yield and the relative soil quality indices (RSQI) indicates the importance of soil quality in these semiarid Alfisol soils. The results and the methodology adopted in the present study could be of importance in improving the soil quality not only for the region of the study, but also in other identical soils and cropping systems across the world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号