首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   3篇
  国内免费   20篇
林业   5篇
农学   9篇
  81篇
综合类   58篇
农作物   9篇
畜牧兽医   18篇
园艺   7篇
植物保护   4篇
  2023年   4篇
  2022年   8篇
  2021年   6篇
  2020年   9篇
  2019年   15篇
  2018年   4篇
  2017年   13篇
  2016年   14篇
  2015年   13篇
  2014年   11篇
  2013年   14篇
  2012年   10篇
  2011年   19篇
  2010年   7篇
  2009年   8篇
  2008年   7篇
  2007年   9篇
  2006年   9篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
61.
A pot experiment was conducted to evaluate the effect of indigenous arbuscular mycorrhizal fungi (AMF) and the synergy of indigenous AMF and sheep manure (SM) on cotton growth and nitrogen and phosphorus uptake. AMF were a mixture of Glomus viscosum, Glomus mosseae, and Glomus intraradices initially isolated from a Syrian cotton field. Dry biomass was enhanced significantly by AMF and was higher at AMF plus SM treatment compared to control. Cotton plants showed a significant dependency to indigenous AMF, which was 52% in the AMF treatment. Plant concentrations of nitrogen (N)and phosphorus (P) were significantly higher in mycorrhizal than nonmycorrhizal plants. Maximum plant N and P uptake was found in the treatment of AMF inoculation with SM, which was significantly higher by 202% and 397% over control, respectively. Indigenous AMF was successful in colonizing cotton roots and when combined with SM resulted in better plant growth and N and P uptake.  相似文献   
62.
The effects of arbuscular mycorrhizal fungi (AMF), Glomus mosseae, on oxygen radical scavenging system of tomato under salt stress were studied in potted culture experiments. The response of tomato (Lycopersieon eseulentum L.) cultivar Zhongza 9 seedlings with AMF inoculation and control to salt stress (0, 0.5 and 1.0% NaCl solution, respectively) was investigated. The results showed that the salt stress significantly reduced the dry matter content of roots, stems and leaves, and also the leaf area as compared with the control treatment. However, arbuscular mycorrhizal-inoculated (AM) significantly improved the dry matter and the leaf area in the salt-stressed plants. The effect of AMF on dry matter was more pronounced in aerial bromass than in root biomass which might be due to AM colonization. The activities of SOD, POD, ASA-POD, and CAT in leaves and roots of mycorrhizal and non-mycorrhizal treatment of tomato plants were increased and had different rules under different NaCl concentrations (solution of 0, 0.5 and 1% NaCl), but all enzymes had a rise in the beginning of treatment under salt stress conditions. The AMF did not change the rule of tomato itself under salt stress, but AMF increased these enzyme activities in different levels. The AMF treatment significantly increased SOD, POD and ASA-POD activities in leaves and roots, whereas it had little effects on CAT in root. O2- production rate and MDA content in leaves increased continuously, which showed a positive line correlation with salt stress concentration. O2- production rate and MDA content in tomato plants significantly decreased by AM treatment compared with nonmycorrhizal treatment. In conclusion, AM could alleviate the growth limitations imposed by saline conditions, and thereby play a very important role in promoting plant growth under salt stress in tomato.  相似文献   
63.
The colonization and diversity of arbuscular mycorrhizal fungi (AMF) associated with the rhizosphere of tea [Camellia sinensis (L.) O. Kuntze] growing under ‘natural’ as well as ‘cultivated’ conditions in the Kumaun region of Uttaranchal Himalaya (India), during the periods of active growth and dormancy were investigated. Root and rhizosphere soil samples, collected from both the ecosites (natural and cultivated), were monitored for root colonization. While the percent root colonization was quite high (77.66 ± 4.40 and 86.40 ± 3.02%, in the natural and cultivated tea, respectively) during the period of active growth in both the ecosites, relatively higher colonization (97.33 ± 0.78 and 98.13 ± 0.80%, in the natural and cultivated tea, respectively) was recorded during the period of dormancy. The rhizosphere of cultivated tea bushes was found to be dominated by Glomus morhpotypes (88.89% of the total isolates) along with three morphotypes of Acaulospora; occurrence of 35 morphotypes belonging to four genera viz. Acaulospora (11.43%), Gigaspora (11.43%), Glomus (68.57%) and Scutellospora (8.57%) was recorded in the rhizosphere of tea plants from the natural ecosite. A total of 51 AMF morphotypes were detected. Shannon–Weaver index of diversity was higher (1.80 ± 0.13 and 2.05 ± 0.10 during periods of active growth and dormancy, respectively) at the species level for the natural ecosite over its counterparts from the cultivated ecosite. Values for the diversity indices of natural and cultivated ecosites did not show much variation in the period of dormancy. These data suggest that collectively, various cultural practices negatively affect AMF diversity at the genus level in tea plantations of the colder regions.  相似文献   
64.
为了研究土著丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与间作模式对坡耕地红壤径流氮形态变化的响应,通过自然降雨条件下的径流小区模拟试验,设置不同种植模式(单作玉米、玉米/大豆间作、单作大豆)和不同菌根处理(抑菌(喷施苯菌灵)、未抑菌)进行研究。根据2017年6—9月采集的6次径流水样,分析比较菌根与间作复合处理下径流氮形态变化迁移特征。结果表明:在6次取样时间内,地表径流总氮浓度呈先上升后下降的趋势,硝态氮浓度呈先上升后下降再上升的趋势,而铵态氮浓度则表现出整体下降的趋势,并趋于平缓。所有复合处理中,间作-未抑菌处理的径流总氮浓度最低,较单作玉米-抑菌与单作大豆-抑菌处理显著降低35.0%和42.1%。无论何种种植模式,未抑菌处理的径流硝态氮浓度均明显低于抑菌处理,其中间作-未抑菌处理的径流硝态氮浓度较抑菌处理下的单作玉米与单作大豆处理显著降低,降幅分别为26.2%和33.9%。无论是否抑菌,间作处理的径流铵态氮浓度均低于单作玉米与单作大豆处理,间作-未抑菌处理下其浓度最低,较单作玉米-抑菌与单作大豆-抑菌处理明显降低34.8%和28.2%。由此可见,土著AMF与玉米/大豆间作对径流氮流失具有一定的协同削减潜力。  相似文献   
65.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   
66.
近年来设施辣椒连作障碍日益突出,其中氮肥的大量不合理施用和高残留是限制辣椒高产、优质栽培的主要因素之一。研究土著丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)与间作体系强化蔬菜对不同形态氮(N)的利用并结合土壤菌丝密度、N形态及酶活性的反馈作用,可为设施土壤N素的高效利用和降低土壤N残留提供依据。本研究采用盆栽试验,设置辣椒||菜豆间作和各自单作种植模式,不同AMF处理[不接种(NM)、接种土著AMF]和不同形态N处理[不施N(N0)、无机氮(碳酸氢铵120mg·kg~(-1),ION)和有机氮(谷氨酰胺120 mg·kg~(-1),ON)],探讨了设施条件下接种土著AMF、施用不同形态N与间作对辣椒、菜豆根围土壤菌根建成、酶活性及N利用的影响。结果表明,与NM相比,接种土著AMF使设施辣椒、菜豆植株生物量及N吸收量显著增加(除菜豆单作-ON处理),显著降低土壤NH_4~+-N、NO_3~--N含量。无论施用何种形态N,均显著增加辣椒、菜豆植株生物量(除菜豆单作-AMF处理)及N吸收量,表现为ONION。与单作-ON-AMF处理相比,间作-ON-AMF处理下的辣椒N吸收量显著增加39.9%、菜豆N吸收量显著增加93.0%。对N利用影响因子的分析结果表明,间作协同接种土著AMF较大程度上增加了土壤有机质含量及蛋白酶、脲酶、硝酸还原酶活性。相关性分析显示,辣椒、菜豆植株N吸收量与AMF侵染率呈极显著正相关关系,而土壤NH_4~+-N和NO_3~--N含量则与AMF侵染率呈现一定的负相关关系。此外,土壤蛋白酶、脲酶和硝酸还原酶活性与辣椒、菜豆植株N吸收量呈正相关关系。可见,所有复合处理中,以间作体系接种土著AMF与施用适量有机氮的组合明显促进了设施辣椒、菜豆生长和N素利用。  相似文献   
67.
丛枝菌根真菌研究中土壤灭菌方法综述   总被引:4,自引:0,他引:4  
丛枝菌根真菌与植物根系的共生关系是当今微生物领域的研究热点之一。建立无丛枝菌根真菌的对照则是此研究的难点。本研究综述了高温灭菌法、γ射线灭菌法、化学熏蒸法、苯菌灵抑制法和物理割断法5种常用方法。每种方法各有利弊,高温灭菌法、γ射线灭菌法和化学熏蒸法适用于室内试验,但前两者对土壤理化性质有一定的影响,化学熏蒸法会破坏环境;苯菌灵抑制法和物理割断法适用于室外试验,其中前一种方法会破坏环境,需严格控制药剂用量,后一种方法虽环保,但可能影响土壤中水分和营养成分的交换。因此,研究者应根据研究环境和目的选择适宜的方法。  相似文献   
68.
土壤中丛枝菌根真菌对宿主植物磷吸收作用机制综述   总被引:5,自引:1,他引:5  
由于贫瘠土壤不能供给植物足够磷素,而丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在促进植物生长和吸收利用磷方面发挥着重要的作用。评述了国内外丛枝菌根真菌吸收土壤磷、根际环境与AMF共同作用对土壤磷的影响、AMF储磷机理、磷从菌丝到根系转移和植物吸收利用磷机制的研究进展,为今后应用AMF改善土壤肥力和深刻了解接菌土壤中磷的迁移转化规律奠定基础。  相似文献   
69.
不同土壤类型下AM 真菌分布多样性及与土壤因子的关系   总被引:8,自引:3,他引:8  
以禾本科植物群落为研究对象, 研究了宁夏六盘山林地、银川农耕地、暖泉农耕地、固原农耕地、盐池沙地、灵武沙地6 个采样地点5 种土壤类型(黑垆土、灌淤土、黄绵土、灰钙土、风沙土)下AM 真菌物种多样性及其与土壤因子的关系。结果表明: 5 种土壤类型采样点的植被根际土壤中共鉴定出5 属48 种AM真菌, 其中, 无梗囊霉属(Acaulospora)1 种, 巨孢囊霉属(Gigaspora)3 种, 球囊霉属(Glomus)37 种, 类球囊霉属(Paraglomus)1 种, 盾巨孢囊霉属(Scutellospora)6 种, 各采样点土壤均以球囊霉属为优势属。地球囊霉(G.geosporum)和木薯球囊霉(G. manihotis)是6 个采样地点中的优势种。不同土壤类型各采样点AM 真菌各属的频度存在明显差异, 球囊霉属在各点均有出现, 频度值最高。具有较高植被多样性的暖泉样点, AM 真菌的种属数量较多。土壤环境因子对AM 真菌孢子密度的影响因所处土壤、植被类型不同而异。pH、全盐、速效钾、速效磷等土壤肥力因子, 在PCA 轴上能最大程度地解释AM 真菌孢子密度与土壤环境因子之间相互关系的大部分信息。宁夏不同土壤类型区域中AM 真菌种类及分布一定程度上与该采样点的植被类型、植物多样性和土壤肥力特征相对应。  相似文献   
70.
The productivity and diversity of plant communities are affected by soil organisms such as arbuscular mycorrhizal fungi (AMF), root herbivores and decomposers. However, it is unknown how interactions between such functionally dissimilar soil organisms affect plant communities and whether the combined effects are additive or interactive. In a greenhouse experiment we investigated the individual and combined effects of AMF (five Glomus species), root herbivores (wireworms and nematodes) and decomposers (collembolans and enchytraeids) on the productivity and nutrient content of a model grassland plant community as well as on soil microbial biomass and community structure. The effects of the soil organisms on productivity (total plant biomass), total root biomass, grass and forb biomass, and nutrient uptake of the plant community were additive. AMF decreased, decomposers increased and root herbivores had no effect on productivity, but in combination the additive effects canceled each other out. AMF reduced total root biomass by 18%, but decomposers increased it by 25%, leading to no net effect on total root biomass in the combined treatments. Total shoot biomass was reduced by 14% by root herbivores and affected by an interaction between AMF and decomposers where decomposers had a positive impact on shoot growth only in presence of AMF. AMF increased the shoot biomass of forbs, but reduced the shoot biomass of grasses, while root herbivores only reduced the shoot biomass of grasses. Interactive effects of the soil organisms were detected on the shoot biomasses of Lotus corniculatus, Plantago lanceolata, and Agrostis capillaris. The C/N ratio of the plant community was affected by AMF.In soil, AMF promoted abundances of bacterial, actinomycete, saprophytic and AMF fatty acid markers. Decomposers alone decreased bacterial and actinomycete fatty acids abundances but when decomposers were interacting with herbivores those abundances were increased. Our results suggests that at higher resolutions, i.e. on the levels of individual plant species and the microbial community, interactive effects are common but do not affect the overall productivity and nutrient uptake of a grassland plant community, which is mainly affected by additive effects of functionally dissimilar soil organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号