首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17754篇
  免费   845篇
  国内免费   2763篇
林业   1444篇
农学   2350篇
基础科学   1262篇
  4329篇
综合类   6846篇
农作物   2126篇
水产渔业   374篇
畜牧兽医   1152篇
园艺   504篇
植物保护   975篇
  2024年   100篇
  2023年   315篇
  2022年   495篇
  2021年   556篇
  2020年   580篇
  2019年   679篇
  2018年   519篇
  2017年   898篇
  2016年   1081篇
  2015年   811篇
  2014年   1038篇
  2013年   1211篇
  2012年   1441篇
  2011年   1476篇
  2010年   1139篇
  2009年   1185篇
  2008年   1002篇
  2007年   1106篇
  2006年   1001篇
  2005年   798篇
  2004年   562篇
  2003年   428篇
  2002年   328篇
  2001年   310篇
  2000年   257篇
  1999年   253篇
  1998年   240篇
  1997年   204篇
  1996年   208篇
  1995年   203篇
  1994年   149篇
  1993年   145篇
  1992年   138篇
  1991年   111篇
  1990年   91篇
  1989年   81篇
  1988年   61篇
  1987年   48篇
  1986年   34篇
  1985年   14篇
  1984年   9篇
  1983年   5篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1962年   4篇
  1955年   5篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
91.
为了解燕麦穗粒数形成过程与源、库特征之间的关系,连续两年以10个不同来源、熟期、穗型、株型、小穗数的燕麦品种为试验材料,测定三叶期至拔节期的幼穗分化阶段及抽穗期源库特征,采用方差分析、聚类分析、逐步回归分析等方法,分析不同燕麦基因型源库特征及对穗粒数形成过程的影响。结果表明,燕麦穗粒数形成过程存在基因型差异,幼穗分化较好品种的穗粒数较全部品种平均值高11.22%~65.43%;幼穗分化较好品种的光合势、干物质量、粒数叶比、收获指数显著高于幼穗分化较差品种,其中粒数叶比和收获指数是影响穗粒数形成的主要因素,粒数叶比和收获指数较全部品种平均值分别高0.99%~68.74%和0.85%~13.80%。综上所述,源库协调是燕麦幼穗分化良好的生理基础,可通过提高光合势和干物质量达到增源的目的,进而提高穗粒数。  相似文献   
92.
以番茄(Solanum lycopericum)超表达桃SnRK1(蔗糖非发酵蛋白激酶–1)基因PpSnRK1α的株系及野生型为试材,研究在养分供应不足时SnRK1对植株生长的影响。结果表明,低营养条件下,转基因番茄叶片和根系中的Sn RK1酶活性比野生型高41.55%和39.46%;功能叶片的净光合速率平均比野生型高18.98%;低营养胁迫12 d的叶片SOD、POD、CAT活性比野生型高35.56%、28.85%和14.90%;根系活力比野生型高26.39%;茎和叶中氮磷含量显著高于野生型,钾含量两者差别不大,在根系中氮磷含量差别不大,而钾含量显著高于野生型,且氮素向地上部茎和叶中的分配比率增加。上述结果说明,在营养缺乏条件下,超表达PpSnRK1α可以提高番茄功能叶净光合速率,促进植株对氮素的吸收利用,从而延缓叶片衰老。  相似文献   
93.
研究了开展农业技术经济学实验教学的必要性,根据课程内容,确定了动态经济效果评价等实验项目,选择Excel、SPSS、Eviews、LINDO、DEAP软件作为实验教学软件,并分析了实验实施的各个环节。  相似文献   
94.
Microbial extracellular polymeric substances (EPS) have been shown to alter soil moisture retention and to improve seedling survival and plant growth at the bulk scale. The mechanisms of EPS-mediated water retention include reversible swelling of the cross-linked polymer matrix and the promotion of an aggregated soil structure. However, the effects of EPS on water retention have never been directly observed at the pore scale. Here, emulated soil micromodels were developed to directly observe the effects of physical, chemical, and biological factors on pore-scale water retention. In this demonstration, a pseudo-2D pore structure was created to represent physical features of a fine sandy loam. Replicate micromodels were initially saturated with suspensions of different soil bacteria, and pore-scale air infiltration was directly imaged over time. External evaporativity was held constant through the use of a custom constant-humidity environmental chamber. Micromodels filled with suspensions of highly mucoid Sinorhizobium meliloti retained moisture about twice as long as physically identical micromodels filled with suspensions of non-mucoid S. meliloti. Relative drying rates in six replicate experiments ranged from 1.1 to 2.5 times slower for mucoid suspensions. Patterns of air infiltration were similar but not identical across replicates. The results suggest that pore fluid EPS and micromodel geometry act together to limit evaporation at pore throats. Advantages of the micromodel approach include direct observation of pore-scale dynamic process, and the ability to systematically replicate complex physical structures. These abilities will enable users to screen benefits from different structures and from microbial compositions, and build predictive understanding of the overall function of microbe-habitat systems.  相似文献   
95.
本科酶工程课程教学实践与体会   总被引:1,自引:0,他引:1  
酶工程是高校生物工程和生物技术专业重要的专业课。结合课程教学实践,总结了酶工程教学过程中的几点体会,以提高酶工程教学质量,达到学生综合能力的培养目的。  相似文献   
96.
微型学习是以微型内容为特点,微型媒体为支撑的非正式学习模式。它适应了当代生活语境下人们对知识获取方式创新的要求,倡导了学习者尊重自身生命体验的情感回归,体现了人作为受教育者的社会性发展的重要路径,同时也为培养学习者综合能力提供了重要平台。  相似文献   
97.
The weight and composition of soybean seeds (Glycine Max L. Merrill) depend on changes in carbon and nitrogen assimilate supply during grain filling. Soybean pods and seeds are green, evidencing their capacity to capture light. However, the current physiological knowledge does not consider any effect of incident solar radiation reaching the pods on seed weight and composition. The objective of this work was to investigate the response of seed weight and composition to changes in assimilate supply from leaves, to the incident solar radiation reaching the pods and to the combination of both, changes in assimilate supply from the leaves and incident solar radiation on pods of soybean plants. Field experiments were performed during two growing seasons at Balcarce, Argentina. Treatments modified the amount of assimilates supplied by the leaves (plant shading, defoliation), the solar radiation reaching the pods (pod shading) or both (defoliation and pod shading) during seed filling. Plant shading and defoliation reduced seed weight, oil concentration and oil and protein content and increased the concentration of saturated and poli-unsaturated fatty acids while reduced oleic acid percentage. Pod shading increased the concentration of stearic acid and reduced the concentration of linolenic acid. When pods were shaded on defoliated plants, seed weight and oil and protein content decreased while fatty acid composition was similar to values obtained under defoliation treatment. Based on these results, a conceptual model that considers photoheterotrophic nature of reproductive structures of soybean is proposed. Seed weight, oil and protein content and oil fatty acid composition depended on assimilate availability for the seeds. The response of oil and protein content to assimilate supply depended on whether leaves were present or not. The effect of solar radiation incident on pods depended on the amount of assimilates available for the seeds: (i) when carbon allocated was low (defoliation treatments), pods contributed to seed carbon economy but solar radiation incident on them did not affect fatty acid composition; (ii) when carbon allocated to the seeds was high (intact plants), contribution of pods to seed carbon economy was not significant, but the amount of solar radiation incident on pods produced significant changes in fatty acid composition.  相似文献   
98.
施钾量对超高产早稻品种产量和稻米品质的影响   总被引:2,自引:0,他引:2  
以超高产水稻品种陆两优996和淦鑫203为材料,在大田条件下研究了不同施钾量对其产量和稻米品质的影响。结果表明,施钾显著提高双季早稻有效穗数、每穗粒数和产量,增加生物产量、促进茎鞘物质运转,提高抽穗期剑叶的气-叶温差和颖花伤流量,降低抽穗后的根系活力衰退值。施钾量与倒1节间大维管束数、茎秆抗折力和稻米蛋白质含量显著正相关。施钾提高了陆两优996的垩白粒率和垩白度,但降低了淦鑫203的垩白粒率和垩白度。在本试验条件下,最适施钾量为180 kg/hm2。  相似文献   
99.
The estimation of crop nitrogen status in fresh vegetation leaf using field spectroscopy is challenging due to the weak responses on leaf/canopy reflectance and the overlapping with the absorption features of other compounds. Although the spectral indices were proposed in the literature to predict leaf nitrogen content (LNC), the performance of selected spectral indices to estimate the LNC is often inconsistent. Moreover, the models for nitrogen content estimation changed with the growth stage. The goal of this study was to evaluate the performance of published indices, ratio of data difference index (RDDI) and ratio of data index (RDI) developed by band iterative-optimization algorithm in LNC estimation. The correlation analysis, linear regression and cross validation were used to analyze the relationship between spectral data and LNC and construct the best performed estimation model. The study was conducted by the data of five growing seasons of litchi from the orchards in Guangdong Province of China. Results showed that the relationship between chlorophyll (Chl) related spectral indices and LNC varied with the growth stage. Even in flower bud morphological differentiation stage and autumn shoot maturation stage, there were not significant correlations between the proposed spectral indices and LNC. Besides it is difficult to estimate the LNC by the general model across the growth stages due to the integrated effects of cultivar, biochemical, canopy structure, etc. The band iterative-optimization algorithm can improve the sensitivity of spectral data to LNC to some extent. The optimal RDDI performed better than other indices for the synthetic dataset and the dataset in each growth stage. And the sensitive bands selected in the optimal indices at each growth stage are not consistent, which are not only related to the Chl absorption but also other biochemical components, such as starch, lignin, cellulose, protein, etc. In general, the LNC can be estimated by the optimized CR-based RDDI indices in autumn shoot maturation stage, flower spike stage, fruit maturation stage, and flowering stage with the R2 > 0.50 and RMSE < 0.14. Although there were the significant relationship between RDIs and RDDIs in flower bud morphological differentiation stage, the highest R2s of the model developed by RDDIs and RDIs were less than 0.50 in cross validation. This study indicated that the applicability of canopy reflectance to estimate litchi LNC was closely related to the growth stage of litchi. Growth stage-specific models will be preferred for estimating litchi LNC estimation.  相似文献   
100.
The Less Favoured Area (LFA) scheme is a major element of the EU Rural Development Policy, aimed at supporting farming in areas with natural handicaps or low soil productivity. It has been in place since 1975 and accounts for 14% of total Community funding. In 2003, the European Court of Auditors recommended that the socio‐economic criteria on which the current scheme is based be replaced by biophysical criteria. Reviews of the proposals suggest that in Atlantic climates of Northwest Europe, the new criteria do not delineate adequately areas where agricultural productivity is constrained by the biophysical environment and that such areas are instead demarcated by the occurrence of excess soil moisture conditions. In this paper, we review the impact of excess soil moisture conditions on the sustainability of farming systems and their role in constraining strategic and tactical farm management practices. In particular, we review the scientific evidence on the impact of excess soil moisture conditions on herbage growth, herbage utilization, farm operations and environmental sustainability. On the basis of this, we propose an additional biophysical criterion for the new delineation of LFAs, namely the length of time that soil water is in excess of field capacity (‘field capacity days’). While there is no clear threshold for field capacity days above which agricultural sustainability is acutely constrained, the evidence reviewed in this paper suggests that the sustainability of intensive livestock farming and tillage systems is particularly challenging in scenarios where the 80 percentile of field capacity days exceeds 220–230 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号