首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   4篇
  国内免费   9篇
林业   7篇
农学   3篇
  188篇
综合类   37篇
农作物   2篇
畜牧兽医   4篇
园艺   2篇
植物保护   4篇
  2022年   4篇
  2021年   4篇
  2020年   6篇
  2019年   6篇
  2018年   7篇
  2017年   6篇
  2016年   15篇
  2015年   18篇
  2014年   15篇
  2013年   11篇
  2012年   5篇
  2011年   30篇
  2010年   25篇
  2009年   20篇
  2008年   12篇
  2007年   17篇
  2006年   23篇
  2005年   14篇
  2004年   4篇
  2003年   4篇
  2001年   1篇
排序方式: 共有247条查询结果,搜索用时 218 毫秒
61.
种植转Bt基因棉花不同年限土壤PLFA指纹特征与差异   总被引:3,自引:1,他引:2  
为研究连续种植转Bt基因棉花对土壤微生物群落结构的影响,从连续种植3年转基因棉花晋棉26和中棉所41大田,采集土壤样品,测定磷脂脂肪酸(Phospholipid fatty acid,PLFA)。结果表明,不同品种和种植年限对不同生育期土壤微生物影响不同,随着种植年限和棉花残茬进入土壤生态系统,转基因棉花土壤细菌占总量的百分数有降低趋势,革兰氏阳性和阴性细菌的比例低于非转基因品种;转基因棉花土壤真菌的比例逐渐增加。说明转基因棉花连续种植可能改变土壤微生物群落结构。  相似文献   
62.
Microbial communities in floodplain soils are exposed to periodical flooding. A long-term submerged Eutric Gleysol (GLe), an intermediate flooded Eutric Fluvisol (FLe), and a short-time flooded Mollic Fluvisol (FLm) at the Elbe River (Germany) with similar organic carbon contents (Corg) between 8.1% and 8.9% were selected to test the quality of phospholipid fatty acids (PLFA), soil microbial carbon (Cmic), basal respiration (BR), metabolic quotient (qCO2), and Cmic/Corg ratio to characterize and discriminate these soils with microbial parameters.The three floodplain soils can be differentiated by Cmic and by total PLFA-biomass. Due to the different flooding durations and the time since the soils were last flooded Cmic and PLFA-biomass increase in the order GLe<FLe<FLm. Both parameters correlate significantly (r=0.999;p<0.05). The Cmic/Corg ratios are low in comparison to terrestrial soils and revealed the same ranking over the three soils like Cmic. Contrary, qCO2 and BR are highest in GLe and lowest in FLm according to inundation regime. The diminished Cmic, high BR, and high qCO2 values in GLe seem to be an unspecific response of aerobic soil microorganisms on the long flooding period and the resulting short time for developing after last flooding as well as the low pH value. Different plant communities and their residues may influence the microbial diversity additionally.The PLFA profiles were dominated by the group of saturated fatty acids that together constituted almost 62-72% of the total fatty acids identified in the soils. In GLe all groups of PLFA, inclusive monounsaturated fatty acids, are lowest and in FLm highest, while in FLe the PLFA fractions show an intermediary amount of the three soils. The FLm had most of the time aerobic conditions and revealed therefore the highest Cmic, PLFA-biomass, especially monounsaturated fatty acids, Cmic/Corg ratio as well as relatively low BR and qCO2 value. These indicate that microorganisms in FLm are more efficiently in using carbon sources than those in GLe and FLe.All 26 identified PLFA were found in FLe and FLm, while the polyunsaturated fungi biomarker 18:2ω6,9c could not be detected in GLe. In this long-time submerged soil the environmental conditions which microorganisms are exposed might be disadvantageous for fungi.  相似文献   
63.
Analysis of phospholipid fatty acids (PLFAs) was performed to investigate effects of 2,4,6-trinitrotoluene (TNT) contamination and soil remediation on microbial biomass and community structure. A TNT-contaminated and an uncontaminated soil from a former ammunition plant were analysed before and after a humification/remediation process. TNT contamination reduced microbial biomass but indicated only minor differences in PLFA composition between the contaminated and uncontaminated soils. The humification process increased microbial biomass and altered soil PLFA patterns to a larger degree than did TNT contamination.  相似文献   
64.
65.
磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用   总被引:28,自引:1,他引:28  
颜慧  蔡祖聪  钟文辉 《土壤学报》2006,43(5):851-859
磷脂脂肪酸(PLFA)是活体微生物细胞膜的重要组分,不同类群的微生物可通过不同的生化途径合成不同的PLFA。一些PLFA可作为分析微生物量和微生物群落结构变化的“生物标记”。在土壤微生物分析中,越来越多地采用了PLFA方法。本文介绍了表征微生物的一些PLFA、从土壤中提取PLFA的方法以及用GC-MS分析PLFA的原理。本文还将常用的研究微生物多样性的几种方法进行了比较;传统的分析土壤微生物群落的方法依赖于培养技术,只能培养和分离出一小部分微生物群落;Biolog方法可用于研究土壤微生物群落生理多样性,即可反映微生物群落如何利用各种碳源底物,但对快速生长和适合在Biolog实验条件下生长的小部分群落成员有强烈的选择性;核酸分析方法的主要缺点是不能对土壤微生物进行定量分析;而PLFA方法相对于上述几种方法有诸多优势。本文通过一些实例证明PLFA方法的特色或独到之处,也分析了其缺点。采用PLFA方法并结合其他方法有助于获取土壤微生物群落多样性的更多和更全面而完整的信息。  相似文献   
66.
We hypothesized that nematode and microbial communities vary between soil aggregate fractions due to variations in physical and/or resource constraints associated with each fraction and that this, in turn, contributes to management impacts on whole soil food webs. Nematode and microbial communities were examined within three soil fractions: large macroaggregates (LM; >1000 μm), small macroaggregates (SM; 250-1000 μm) and inter-aggregate soil and space (IS; <250 μm) isolated from soils of four agricultural management systems: conventional tomato (CON), organic tomato (ORG), a minimum till grain-legume intercrop with continuous cover (CC) and an unmanaged riparian corridor (RC). Aggregate fractions appeared to influence nematode assemblages more than did management system. In general the IS and LM fractions contained higher densities of all nematode trophic groups than did SM. Management × fraction interactions for bacterivores and fungivores, however; suggested a non uniform trend across management systems. The IS fraction exhibited stronger trophic links, per the nematode structure index (SI), while the LM and SM fractions had more active fungal decomposition channels as indicated by the channel index (CI). Higher adult to juvenile ratios in the LM and IS than the SM fraction, and a positive correlation between nematode density in the IS fraction and the proportion of macroaggregates in the soil, indicated an association between soil structure and nematode distribution. Microbial communities varied across both aggregate fractions and management systems. Phospholipid fatty acid (PLFA) analysis suggested that the LM fraction contained greater microbial biomass, gram positive bacteria, and eukaryotes than the IS fraction, while SM contained intermediate PLFA associated with these groups. Total PLFA was greater under RC and ORG than under CC or CON. Total PLFA was positively correlated with % C in soil fractions while nematode abundance exhibited no such relationship. Our findings suggest that microbial communities are more limited by resource availability than by habitable pore space or predation, while nematode communities, although clearly resource-dependent, are better associated with habitable pore space for the soil fractions studied here.  相似文献   
67.
Plant chemical composition and the soil community are known to influence litter and soil organic matter decomposition. Although these two factors are likely to interact, their mechanisms and outcomes of interaction are not well understood. Studies of their interactive effects are rare and usually focus on carbon dynamics of litter, while nutrient dynamics in the underlying soil have been ignored. A potential mechanism of interaction stems from the role fauna plays in regulating availability of litter-derived materials in the mineral soil. We investigated the role of soil fauna (meso, macro) in determining the effect of surface-litter chemical composition on nitrogen mineralization and on the micro-food web in mineral soils. In a field setting we exposed mineral soil to six types of surface-applied litter spanning wide ranges of multiple quality parameters and restricted the access of larger soil animals to the soils underlying these litters. Over six months we assessed litter mass and nitrogen loss, nitrogen mineralization rates in the mineral soils, and soil microbes and microfauna. We found evidence that the structure of the soil community can alter the effect of surface-litter chemical composition on nitrogen dynamics in the mineral soil. In particular, we found that the presence of members of the meso- and macrofauna can magnify the control of nitrogen mineralization by litter quality and that this effect is time dependent. While fauna were able to affect the size of the micro-food web they did not impact the effect of litter composition on the abundance of the members of the micro-food web. By enhancing the strength of the impact of litter quality on nitrogen dynamics, the larger fauna can alter nitrogen availability and its temporal dynamics which, in turn, can have important implications for ecosystem productivity. These findings contribute to evidence demonstrating that soil fauna shape plant litter effects on ecosystem function.  相似文献   
68.
Linkages between forest dynamics and ecosystem processes are poorly understood and this limits our ability to adequately estimate future changes in forest ecosystems due to human-induced global change. In particular at the single tree level, our understanding of temporal and spatial changes of belowground properties during forest succession is limited. Thus, our aim was to test whether we find a spatial and temporal gradient in nutrient availability and an associated shift in microbial community structure with increasing distance and age of single trees. We found that inorganic nitrogen was less available below the crown of single trees, while soluble organic carbon (DOC) was much more abundant, in particular in the inner zone of influence, i.e. close to the stem. The fungal:bacterial PLFA ratio was greater while microbial biomass carbon (MicC) was lower below the tree crown, indicating a strong influence of trees on spatial patterns of microbial biomass and community structure. Moreover, the positive correlation between MicC and total extractable N, and the negative correlation between fungal:bacterial biomass and δ15N, suggested that the microbial biomass was N limited below the tree crown and as a consequence nutrient cycling was presumably decelerated compared to open conditions. We also found a temporal pattern of increasing surface soil C and N content with increasing tree age (up to 250 years), underlining the significant role of single trees in creating spatial and temporal heterogeneity in forests.  相似文献   
69.
Microbial communities in soil are highly species-rich, recognition of which has led to the view that functional redundancy within communities may buffer many impacts of altered community structure on soil functions. In this study we investigated the impact of long-term (>50 years) exclusion of plant-inputs (bare-fallow treatment) on soil microbial community structure and on the ability of the microbial biomass to mineralise tracer additions of 13C-labelled plant-derived C-substrates. Exclusion of plant-inputs resulted in depletion of soil organic matter (SOM) and a reduction in microbial biomass size. The microbial community structure was also strongly affected, as indicated by the distinct phospholipid fatty acid (PLFA) profiles in bare-fallow and grassland soils. Mineralisation of labile plant-derived substrates was not perturbed by the bare-fallow treatment. The incorporation of labile plant-derived C into PLFA biomarkers was found to differ between soils, reflecting the distinct community structures of the soils and indicating that these substrates were utilised by a broad range of microbial groups. In contrast, the mineralisation of recalcitrant plant-derived substrates was reduced in bare-fallow soil and the fate of substrate-derived C within PLFA biomarkers was, initially, similar between the soils. These results indicate that utilisation of these recalcitrant substrates was a function restricted to specific groups, and that exclusion of plant-derived inputs to soil had reduced the capacity of bare-fallow microbial communities to utilise this substrate type. Therefore, the study suggests that long-term selective pressure on microbial communities, resulting in altered community structure, may also result in altered functional attributes. This structure-function relationship was apparent for utilisation of recalcitrant plant-derived substrates, but not for the more widely distributed attribute of labile C-substrate utilisation.  相似文献   
70.
Soil fauna are a key component of soil biodiversity and a driver of soil functioning. While the importance of soil fauna is well recognized, quantitative estimates of the role of soil fauna on soil biogeochemical processes, such as plant litter decomposition, are limited by methodological constraints. The addition of naphthalene, a polycyclic aromatic hydrocarbon (C10H8), to suppress soil fauna has been used for decades in decomposition experiments, but its efficacy remains questioned. In fact, we lack a rigorous field assessment of the efficacy of naphthalene additions for soil fauna suppression and potential non-target effects on the soil microbial community and carbon cycling. We added naphthalene at a high rate (477 g m−2) monthly for 23 months on the bare soil surface of a tallgrass prairie. We determined the effect of such additions on the abundance of nematodes and micro-arthropods along the soil profile to a depth of 20 cm at 11, 16 and 23 months after initiating naphthalene application. We used the variation in the natural 13C abundance of the naphthalene (δ13C – 25.5‰) as compared to the native soil (δ13C  −17‰) to quantify naphthalene contribution to soil CO2 efflux and microbial biomarkers (PLFA). Naphthalene addition significantly reduced the abundance of oribatid mites (−45%), predatory mites (−52%) and springtails (−49%), but did not affect nematode abundance. The 13C abundance of a few Gram-negative (cy17:0, 18:1ω7c, 16:1ω7c), Gram-positive (a15:0, i15:0) and Actinobacteria (10Me-16:0, 10Me-18:0) PLFA markers decreased significantly in naphthalene treated plots, indicating bacterial utilization of naphthalene-derived C. Mixing models showed this contribution to be highly variable, with the highest naphthalene-C incorporation for Gram negative bacteria. Naphthalene-C was not incorporated in fungal PLFAs. This microbial utilization did not affect overall microbial abundance, community structure or activity, estimated as soil respiration. This experiment proves that naphthalene addition is a feasible method to reduce soil micro-arthropods in the field, with negligible direct effects on soil nematodes, microbial abundance and C dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号