首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5417篇
  免费   308篇
  国内免费   468篇
林业   411篇
农学   814篇
基础科学   212篇
  912篇
综合类   2107篇
农作物   316篇
水产渔业   63篇
畜牧兽医   430篇
园艺   149篇
植物保护   779篇
  2024年   36篇
  2023年   122篇
  2022年   238篇
  2021年   222篇
  2020年   259篇
  2019年   285篇
  2018年   228篇
  2017年   327篇
  2016年   313篇
  2015年   282篇
  2014年   327篇
  2013年   349篇
  2012年   412篇
  2011年   401篇
  2010年   315篇
  2009年   276篇
  2008年   260篇
  2007年   255篇
  2006年   197篇
  2005年   171篇
  2004年   140篇
  2003年   91篇
  2002年   89篇
  2001年   64篇
  2000年   61篇
  1999年   71篇
  1998年   54篇
  1997年   42篇
  1996年   41篇
  1995年   45篇
  1994年   46篇
  1993年   37篇
  1992年   37篇
  1991年   30篇
  1990年   20篇
  1989年   15篇
  1988年   7篇
  1987年   9篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1962年   3篇
  1955年   1篇
排序方式: 共有6193条查询结果,搜索用时 421 毫秒
21.
Plants are often subjected to periods of water stress. There are little data examining the effect of water stress on the forage species Plantago lanceolata and Cichorium intybus. In two pot experiments with P. lanceolata and C. intybus, morphological responses under optimum, dry, and very‐dry water treatments with weekly, fortnightly and 3‐weekly defoliation intervals and physiological responses under optimum and very‐dry water treatments were measured. A third experiment compared the rooting depths of P. lanceolata and C. intybus under field conditions. These findings suggest that both P. lanceolata and C. intybus can survive and continue to grow under water stress conditions with the main differences between the two species being attributable to morphological characteristics (root mass, taproot diameter and shoot mass fraction) rather than differences at a physiological level. Overall, the results suggest plantain may be more productive under moderate drought due to its greater shoot mass fraction, whereas chicory may be more productive and persistent under severe drought due to its greater root mass, taproot diameter and root depth under field conditions.  相似文献   
22.
The present investigation was conducted to assess the ameliorative effects of foliar‐applied trehalose on growth, photosynthetic attributes, water relation parameters and oxidative defence mechanism in two maize cultivars under field water deficit conditions. Various components of the experiment comprised two maize cultivars (EV‐1098 and Agaiti‐2002), two water‐stress levels (irrigation after 2 weeks and irrigation after 3 weeks during the entire period of growth), and two levels of trehalose (0 and 30 mm ) and four replicates of each treatment. Water stress significantly reduced the plant biomass production, photosynthetic attributes and water relation parameters in both maize cultivars. In contrast, water stress considerably increased the leaf malondialdehyde (MDA) contents, the activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT), and the levels of non‐enzymatic compounds such as ascorbic acid and tocopherols. In contrast, water stress caused a marked reduction in leaf phenolic contents. Foliar‐applied trehalose significantly increased plant biomass production, and improved some key photosynthetic attributes and plant–water relation parameters. The ameliorative effect of exogenously applied trehalose was also observed on the activities of some key antioxidant enzymes (POD and CAT) and non‐enzymatic compounds (tocopherols and phenolics). Overall, exogenously applied trehalose considerably improved drought tolerance of maize plants by up‐regulating photosynthetic and water relation attributes as well as antioxidant defence mechanism.  相似文献   
23.
林红 《安徽农业科学》2015,(25):211-212
利用大英县2004 ~2013年逐日降水资料,采用统计学方法,对大英近10年降水的实际变化特点、季节差异等进行简要阐述,并对直接影响工农业生产和人们生活、外出旅游以及交通运输等的暴雨进行了重点统计分析.结果表明,2004~2013年大英县年雨量和暴雨日数分布特征均呈单峰型,峰值均出现在7月;暴雨雨量、雨日与年降雨量存在明显的正相关关系;夏季同月雨量差距巨大;初秋的9月出现暴雨的概率较大,月雨量、暴雨出现次数均为全年的次高值;大英县出现秋绵雨的概率达50%,集中出现在9、10月.  相似文献   
24.
Brassica rapa L. is a genetically diverse parent species of the allotetraploid species, oilseed rape (B. napus) and a potential source of drought tolerance for B. napus. We examined the effect of a 13‐day drought stress period during the early reproductive phase, relative to a well‐watered (WW) control, on subsequent growth and development in nine accessions of B. rapa and one accession of Brassica juncea selected for their wide morphological and genetic diversity. We measured leaf water potential, stomatal conductance, water use, and leaf and bud temperatures during the stress period and aboveground dry weight of total biomass at maturity. Dry weight of seeds and reproductive tissue were not useful measures of drought tolerance due to self‐incompatibility in B. rapa. The relative total biomass (used as the measure of drought tolerance in this study) of the 10 accessions exposed to drought stress ranged from 47 % to 117 % of the WW treatment and was negatively correlated with leaf‐to‐air and bud‐to‐air temperature difference when averaged across the 13‐day stress period. Two wild‐type (B. rapa ssp. sylvestris) accessions had higher relative total and non‐reproductive biomass at maturity and cooler leaves and buds than other types. We conclude that considerable genotypic variation for drought tolerance exists in B. rapa and cooler leaves and buds during a transient drought stress in the early reproductive phase may be a useful screening tool for drought tolerance.  相似文献   
25.
This study was conducted to evaluate the influence of seed priming on drought tolerance of pigmented and non‐pigmented rice. Seeds of pigmented (cv. Heug Jinju Byeo) and non‐pigmented (cv. Anjoong) rice were soaked in water (hydropriming) or solution of CaCl2 (osmopriming). Seeds were sown in soil‐filled pots retained at 70 (well‐watered) and 35% (drought) water‐holding capacity. Drought stress caused erratic and poor stand establishment and decreased the growth of both rice types. More decrease in plant height and leaf area under drought stress was noted in pigmented rice, whereas decrease in root length and seedling dry weight, under drought, was more obvious in non‐pigmented rice. Pigmented rice maintained more tissue water and photosynthesis and had more polyphenols, flavonoids and antioxidant activity than non‐pigmented rice. Seed priming was effective in improving stand establishment, growth, polyphenols, flavonoids and antioxidant activity; however, extent of improvement was more in pigmented rice under drought. In conclusion, drought caused erratic germination and suppressed plant growth in both rice types. However, pigmented rice had better drought tolerance owing to uniform emergence, and better physiological and morphological plasticity. Seed priming was quite helpful in improving the performance of both rice types under drought and well‐watered conditions.  相似文献   
26.
An accurate estimation of stomatal resistance (rS) also under drought stress conditions is of pivotal importance for any process‐based prediction of transpiration and the energy budget of real crop canopies and quantification of drought stress. A new model for rS was developed and parameterized for winter wheat using data from field experiments accounting for the influences of net radiation (RNet), air temperature (TAir) and vapour pressure deficit of the atmosphere (VPD) interacting with an average water potential in the rooted soil (ψRootedSoil). rS is simulated with a limiting factor approach as maximum of the metabolic (related to photosynthesis) and hydraulic (related to drought stress) acting influences assuming that, if drought stress occurs, it will dominate stomatal control: rS = max(rS(TAir), rS(RNet), rS(VPD, ψRootedSoil)). This transitional approach is suited to reproduce measured daily time courses of rS with a varying accuracy for the single measurement dates but performed satisfactorily for the whole data set (r2 = 0.63, RMSE = 59 s m?1, EF = 0.60). This new semi‐empiric approach calculates rS directly from external environmental conditions. Therefore, it can be easily implemented in existing model frameworks as link between operational crop growth models that use the concept of radiation use efficiency instead of mechanistic photosynthesis modelling and soil–vegetation–atmosphere transport models.  相似文献   
27.
Sub‐Saharan Africa (SSA) faces twin challenges of water stress and food insecurity – challenges that are already pressing and are projected to grow. Sub‐Saharan Africa comprises 43 % arid and semi‐arid area, which is projected to increase due to climate change. Small‐scale, rainfed agriculture is the main livelihood source in arid and semi‐arid areas of SSA. Because rainfed agriculture constitutes more than 95 % of agricultural land use, water scarcity is a major limitation to production. Crop production, specifically staple cereal crop production, will have to adapt to water scarcity and improved water productivity (output per water input) to meet food requirements. We propose inclusion and promotion of drought‐tolerant cereal crops in arid and semi‐arid agro‐ecological zones of SSA where water scarcity is a major limitation to cereal production. Sorghum uniquely fits production in such regions, due to high and stable water‐use efficiency, drought and heat tolerance, high germplasm variability, comparative nutritional value and existing food value chain in SSA. However, sorghum is socio‐economically and geographically underutilized in parts of SSA. Sorghum inclusion and/or promotion in arid and semi‐arid areas of SSA, especially among subsistence farmers, will improve water productivity and food security.  相似文献   
28.
To improve the abiotic stress tolerance of maize (Zea mays L.), doubled haploid (DH) plants were produced by in vitro selection of microspores exposed to tert‐butyl hydroperoxide (t‐BuOOH) as a powerful prooxidant This study investigated the tolerance of the progenies of t‐BuOOH‐selected DH lines to oxidative stress, cold and drought in controlled environment pot experiments by analyses of photosynthetic electron transport and CO2 assimilation processes, chlorophyll bleaching and lipid peroxidation of leaves. Our results demonstrated that the t‐BuOOH‐selected DH plants exhibited enhanced tolerance not only to oxidative stress‐induced by t‐BuOOH but also to cold and drought stresses. In addition, they showed elevated activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, glutathione reductase and glutathione S‐transferase when compared with the DH lines derived from microspores that were not exposed to t‐BuOOH and to the original hybrid plants. The results suggest that the simultaneous up‐regulation of several antioxidant enzymes may contribute to the oxidative and cold stress tolerance of the t‐BuOOH‐selected DH lines, and that the in vitro microspore selection represents a potential way to improve abiotic stress tolerance in maize.  相似文献   
29.
季节性干旱是限制菠萝增产提质增效的重要原因,发展“以水促肥,以肥促产,水肥高效耦合”的现代灌溉施肥技术,是应对季节性干旱,促进菠萝增产提质增效的重要途径。本文从华南地区季节性干旱时空分布特征、干旱胁迫对菠萝生长发育的影响、我国菠萝水肥管理现状、灌溉施肥技术对菠萝生长发育的影响等4个方面简要阐述了我国菠萝灌溉施肥技术发展的必要性,重点从现代灌溉施肥方式、耗水规律和养分吸收规律等3方面总结了菠萝灌溉施肥技术研究进展,并结合研究进展提出我国菠萝灌溉施肥技术目前存在的问题,探讨未来可能的研究重点和发展方向,为菠萝灌溉施肥技术的研究与应用提供参考。  相似文献   
30.
[Objective] This study aimed to examine indicative roles of texture representing soil organic carbon presence and variability subsequent to cultivation under cold temperate climates with seasonal freeze-thaw events.[Method] Three chronosequences were selected for paired comparisons.Soil samples were collected at six depths with a 10 cm increment.Analysis of variance with general linear model and regression was performed for statistical analysis.[Result] In seasonally frozen soils where fragmentation of macroaggregates was stimulated,soil organic carbon level was positively associated with clay + silt proportion due to a wider textural range,better than sole clay content.Exponential function better fitted the experimental data to present progressively increased effectiveness of clay + silt content in maintaining carbon.Clay content explained 12%-41% and 14%-43% of variation via linear and exponential functions,respectively.Accordingly,clay + silt content explained 47%-65% and 46%-70%.[Conclusion] Texture reflected soil organic carbon occurrence as consequences of reclamation.For seasonally frozen soils with wider textural ranges,it is robust to adapt clay + silt content as dependent variable and exponential function.The generated algorithms provided an available pathway to estimate soil organic carbon losses following cultivation and to evaluate soil fertility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号