首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7513篇
  免费   336篇
  国内免费   788篇
林业   445篇
农学   759篇
基础科学   345篇
  2568篇
综合类   2599篇
农作物   745篇
水产渔业   127篇
畜牧兽医   541篇
园艺   157篇
植物保护   351篇
  2024年   37篇
  2023年   154篇
  2022年   233篇
  2021年   299篇
  2020年   266篇
  2019年   307篇
  2018年   250篇
  2017年   402篇
  2016年   399篇
  2015年   340篇
  2014年   375篇
  2013年   567篇
  2012年   594篇
  2011年   542篇
  2010年   383篇
  2009年   387篇
  2008年   364篇
  2007年   413篇
  2006年   354篇
  2005年   283篇
  2004年   233篇
  2003年   199篇
  2002年   137篇
  2001年   131篇
  2000年   143篇
  1999年   119篇
  1998年   94篇
  1997年   82篇
  1996年   77篇
  1995年   68篇
  1994年   59篇
  1993年   60篇
  1992年   62篇
  1991年   51篇
  1990年   30篇
  1989年   38篇
  1988年   37篇
  1987年   34篇
  1986年   8篇
  1985年   10篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1977年   4篇
  1962年   2篇
排序方式: 共有8637条查询结果,搜索用时 15 毫秒
991.
992.
试验以一种酿酒葡萄为原料,利用顶空固相微萃取/气相色谱-质谱联用技术(HS-SPME/GC-MS)检测了不同可同化氮含量(200、300、400 mg/L)、酵母多糖(150、250、350 mg/L)、发酵温度(14、18、22℃)、初始pH值(3.3、3.5、3.7)和SO2添加量(40、70、100 mg/L)处理发酵酒样中的挥发性香气化合物,探讨了复合酿造因子对贵人香干白葡萄酒主要香气物质含量的影响关系。结果表明,300 mg/L的可同化氮有利于高级醇、酯类、单萜化合物的积累;酵母多糖添加量为250 mg/L时,单萜化合物质量分数达到最大值(198.54μg/L);发酵温度从14℃升高到22℃时,高级醇含量显著升高,酯类和单萜含量显著降低;提高葡萄汁初始pH有利于单萜化合物的积累,不利于高级醇、酯类的生成;添加70 mg/L的SO2时,单萜化合物质量分数最高(181.73μg/L)。正交试验极差分析表明,发酵温度和SO2添加量对高级醇含量影响较大;发酵温度与可同化氮对酯类香气物质含量的影响较大,酵母多糖和pH值对单萜类香气物质含量影响较大。各处理组间的聚类分析可知,可同化氮和酵母多糖对主要香气化合物的影响关联度较高、葡萄汁初始pH值和SO2添加量关联度较高。较低的发酵温度有利于酒样中香叶醇、异戊醇、苯乙醇、辛酸乙酯的生成,添加中等浓度的可同化氮和酵母多糖可促进乙酸异戊酯、乙酸己酯和己酸乙酯的合成,较高的初始pH值有利于芳樟醇、香茅醇和香叶醇的积累。综合分析,发酵温度18℃、初始pH值3.5、70 mg/L SO2、300 mg/L可同化氮、250 mg/L酵母多糖酿造贵人香干白葡萄酒,可有效促进酒样中主要香气化合物的合成释放。  相似文献   
993.
以大穗型水稻品种BL006和R-农白为试验材料,中穗型品种黄华占为对照,在大田栽培条件下,比较不同穗型水稻品种的灌浆动态、群体干物质积累、茎鞘非结构性碳水化合物(NSC)含量、输导组织特征及产量性状,探讨大穗型水稻品种的灌浆结实特性及源-流-库特性。结果表明:(1)大穗型水稻品种BL006和R-农白灌浆起步早、前期灌浆速率快,最终粒重高,不同部位籽粒的灌浆动态基本一致,部位间互为同步灌浆。(2)与中穗型水稻品种相比,大穗型水稻品种BL006和R-农白的穗粒数和千粒重分别升高16.83%、33.75%和13.19%、10.07%,谷粒充实率无显著差异,每穴有效穗数及R-农白的受精率分别降低39.48%、31.24%和10.78%;大穗型水稻品种BL006(全生育期)和R-农白(齐穗期后)的群体干物质积累量升高36.06%和6.59%;灌浆期间茎鞘NSC含量升高99.03%和70.32%;穗颈维管束数量、面积和枝梗维管束的面积显著增加。总之,大穗型水稻品种BL006和R-农白的灌浆速率高、灌浆耗时短、粒重高,其中,BL006的受精率更高,籽粒灌浆更优。灌浆期间,两个大穗型水稻品种“源”足、“流”畅,通过适当减少有效穗数,实现了籽粒的优异灌浆充实,这为探明大穗型水稻品种的灌浆特性及调控机理奠定了基础。  相似文献   
994.
Leaching losses of N are a major limitation of crop production on permeable soils and under heavy rainfalls as in the humid tropics. We established a field trial in the central Amazon (near Manaus, Brazil) in order to study the influence of charcoal and compost on the retention of N. Fifteen months after organic‐matter admixing (0–0.1 m soil depth), we added 15N‐labeled (NH4)2SO4 (27.5 kg N ha–1 at 10 atom% excess). The tracer was measured in top soil (0–0.1 m) and plant samples taken at two successive sorghum (Sorghum bicolor L. Moench) harvests. The N recovery in biomass was significantly higher when the soil contained compost (14.7% of applied N) in comparison to only mineral‐fertilized plots (5.7%) due to significantly higher crop production during the first growth period. After the second harvest, the retention in soil was significantly higher in the charcoal‐amended plots (15.6%) in comparison to only mineral‐fertilized plots (9.7%) due to higher retention in soil. The total N recovery in soil, crop residues, and grains was significantly (p < 0.05) higher on compost (16.5%), charcoal (18.1%), and charcoal‐plus‐compost treatments (17.4%) in comparison to only mineral‐fertilized plots (10.9%). Organic amendments increased the retention of applied fertilizer N. One process in this retention was found to be the recycling of N taken up by the crop. The relevance of immobilization, reduced N leaching, and gaseous losses as well as other potential processes for increasing N retention should be unraveled in future studies.  相似文献   
995.
With this topical issue, we present the work of the Priority Program 1090 of the German Research Foundation (“Deutsche Forschungsgemeinschaft DFG”): “Soils as a source and sink for CO2 – mechanisms and regulation of organic matter stabilisation in soils”. This introduction gives an overview on the sites investigated and the major research approaches, including a glossary of major terms used in the field of soil organic matter research. We point out the advantages of integration of data from a broad field of different soil‐science disciplines and the progress achieved by application and combination of new analytical methods describing the quality and turnover of soil organic matter.  相似文献   
996.

Goal, Scope and Background

Distribution of hydrophobic organic contaminants in abiotic compartments is essential for describing their transfer and fate in aquatic ecosystems. Taihu Lake is the third largest freshwater lake in China. Water quality of Taihu Lake has deteriorated greatly during the last decades and has threatened the water supply. The aim of the present study was to investigate the partitioning of polycyclic aromatic hydrocarbons (PAHs) among overlying water, suspended particulate matter (SPM), sediments, and pore water in Meiliang Bay, Taihu Lake and to provide useful information for the ecological engineering in this area.

Materials and Methods

Overlying water and surface sediment were sampled from six sites in Meiliang Bay, Taihu Lake, China. Within 72 h of sampling, sediments were centrifuged to obtain the pore water. Overlying water samples were filtered to separate dissolved and SPM samples. After extraction, samples were purified following a clean-up procedure. PAH fraction was obtained by elution with a mixture of hexane: DCM (7:3, V/V) and analyzed by GC/MS.

Results

PAHs concentrations in overlying water varied from 37.5 ng/L to 183.5 ng/L. Concentrations of PAHs in pore water were higher than those in overlying water. The total concentrations of 16 priority PAHs in sediments ranged from 2091.8 ng/g-dw to 4094.4 ng/g-dw. PAHs concentrations on SPM were decreased with suspended solid concentrations (SSC). Total PAHs concentrations on SPM varied in the range of 3369.6 ng/g-dw to 7531.1 ng/g-dw. The partition coefficients between sediment and overlying water (log K oc) for PAHs with log K ow<5 were positively correlated with their octanol-water partition coefficients (log K ow) (n=39, r=0.79, p<0.0001). Partition coefficients between sediment and pore water (log K oc′) for all PAHs were also significantly correlated with their log K ow values (n=48, r=0.82, p<0.0001).

Discussion

In general, PAHs derived from combustion sources tend to bind strongly to soot particles in natural sediment. Consequentially, K oc values observed in the natural environment could be orders of magnitude higher than those predicted by linear correlation relationships under laboratory conditions. In the present study, the ratio of log K oc values to log K ow values falls consistently above 1, indicating that the sediment soot carbon in the bay was more attractive for PAHs than n-octanol. The log K oc′ was also higher than that predicted under laboratory conditions, suggesting that the measured pore water PAH concentrations were lower than those predicted. That is to say, not all the sediment PAHs can be available to partition rapidly into sediment pore waters. A variation in soot content is a possible reason. Furthermore, concentrations of PAHs on SPM were higher than those in sediments. The compositions of PAHs on SPM and in sediments were similar, indicating the importance of re-suspension process of sediments in the partitioning process of the shallow lake.

Conclusions

The results indicated the equilibrium partitioning model could be used to predict PAHs distribution in various phases of a shallow lake in the stagnation period, but re-suspension processes should be considered to modify the relationship between log K ocs and log K ows.

Recommendations and Perspectives

Concentration, particle size and composition of resuspended particles could affect the relationship between log K ocs and log K ows. Further work should be done under field conditions, especially where a steady thermodynamic equilibrium state could be assumed.
  相似文献   
997.
针对NY/T 148-1990测定方法中,加活性炭目的是降低由于浸出土壤有机质所产生的颜色对有效磷测定结果的影响,但是却限制了土壤有效磷的批量测定,为此进行了不加活性炭条件下测定土壤有效磷的改进试验。试验结果表明,不加活性炭条件下,浸出土壤有机质所产生的颜色对土壤有效磷测定结果在测定误差范围内可以忽略不计;两种有效磷测定方法的平均值均在误差范围之内,但改进方法所测结果更接近于NY/T 148-1990标准值,测值间离散度低,稳定性强,且测定速度快、结果准确度及精密度高、成本低。  相似文献   
998.
Data from a 16-year field experiment conducted in Shanxi, on the Chinese Loess Plateau, were used to compare the long-term effects of no-tillage with straw cover (NTSC) and traditional tillage with straw removal (TTSR) in a winter wheat (Triticum aestivum L.) monoculture. Long-term no-tillage with straw cover increased SOM by 21.7% and TN by 51.0% at 0–10 cm depth and available P by 97.3% at 0–5 cm depth compared to traditional tillage. Soil microbial biomass C and N increased by 135.3% and 104.4% with NTSC compared to TTSR for 0–10 cm depth, respectively. Under NTSC, the metabolic quotient (CO2 evolved per unit of MBC) decreased by 45.1% on average in the top 10 cm soil layer, which suggests that TTSR produced a microbial pool that was more metabolically active than under NTSC. Consequently, winter wheat yield was about 15.5% higher under NTSC than under TTSR. The data collected from our 16-year experiment show that NTSC is a more sustainable farming system which can improve soil chemical properties, microbial biomass and activity, and thus increase crop yield in the rainfed dryland farming areas of northern China. The soil processes responsible for the improved yields and soil quality, in particular soil organic matter, require further research.  相似文献   
999.
The response of a fresh, agricultural soil when contaminated with pentachlorophenol (PCP) and supplemented with compost (C) or dissolved organic matter (DOM) was studied in the laboratory. The concentration of PCP and the changes in various functionally related properties (i.e. microbial biomass, basal respiration, soil hydrolase and oxidoreductase activity) were measured over 150 d. Variations in the main physical and chemical properties of the soils were also monitored. Two different doses of compost (C1 = 0.27% and C2 = 0.83%, corresponding to 10 and 30 t ha−1, respectively) or DOM (D1 = 0.07% and D2 = 0.2%) equivalent to the carbon content of the two compost doses C1 and C2 were used and the following five systems were investigated: soil (S), soil–compost (S-C1 and S-C2) and soil–DOM (S-D1 and S-D2). PCP concentrations declined progressively and significantly with time. This effect was most pronounced for the soils amended with the lower compost dose C1 (S-C1) and with the two DOM (S-D1 and S-D2) amounts. Significantly reduced amounts of PCP were extracted after its 500-d residence in the various systems. Higher amounts of the residual PCP were extracted from the humic acids (HA), fulvic acids (FA) and humin–mineral (HU) fractions of the 500 d aged samples than from the same unfractionated samples, indicating that the residual PCP preferentially accumulated in the organic fractions of soil. The soil showed an endogenous microbial activity as indicated by basal respiration, microbial biomass and all the enzymatic activities tested (dehydrogenase, glucosidase, phosphatase, arylsulphatase and urease). Addition of the PCP severely depressed some of the tested biochemical properties suggesting an inhibitory effect on microbial activity. Conversely, higher basal respiration, and similar β-glucosidase and phosphatase activities were measured in comparison with the controls. No significant effects were observed following the addition of two doses of the compost or the DOM. Fungal colonies belonging to the taxonomic group of Ascomycetes and identified as Byssochlamys fulva developed with time in all the PCP-contaminated samples. Growth of B. fulva in vitro in the presence of PCP showed that the isolate was tolerant to 12.5 and 25 mg l−1 PCP and degraded 20% of its initial concentration in 8 d. Overall, the results indicate that many complex processes occurred in the contaminated soil and combinations of these determined the response to PCP contamination. The sorption of PCP to the soil matrix (which increased with time) and its degradation/transformation by indigenous soil microbial activity were likely involved. Both the processes appeared to be favoured by the presence of dissolved organic matter.  相似文献   
1000.
Plants link atmospheric and soil carbon pools through CO2 fixation, carbon translocation, respiration and rhizodeposition. Within soil, microbial communities both mediate carbon-sequestration and return to the atmosphere through respiration. The balance of microbial use of plant-derived and soil organic matter (SOM) carbon sources and the influence of plant-derived inputs on microbial activity are key determinants of soil carbon-balance, but are difficult to quantify. In this study we applied continuous 13C-labelling to soil-grown Lolium perenne, imposing atmospheric CO2 concentrations and nutrient additions as experimental treatments. The relative use of plant- and SOM-carbon by microbial communities was quantified by compound-specific 13C-analysis of phospholipid fatty acids (PLFAs). An isotopic mass-balance approach was applied to partition the substrate sources to soil respiration (i.e. plant- and SOM-derived), allowing direct quantification of SOM-mineralisation. Increased CO2 concentration and nutrient amendment each increased plant growth and rhizodeposition, but did not greatly alter microbial substrate use in soil. However, the increased root growth and rhizosphere volume with elevated CO2 and nutrient amendment resulted in increased rates of SOM-mineralisation per experimental unit. As rhizosphere microbial communities utilise both plant- and SOM C-sources, the results demonstrate that plant-induced priming of SOM-mineralisation can be driven by factors increasing plant growth. That the balance of microbial C-use was not affected on a specific basis may suggest that the treatments did not affect soil C-balance in this study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号