首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2528篇
  免费   110篇
  国内免费   733篇
林业   198篇
农学   199篇
基础科学   939篇
  798篇
综合类   1000篇
农作物   34篇
水产渔业   65篇
畜牧兽医   90篇
园艺   9篇
植物保护   39篇
  2024年   15篇
  2023年   58篇
  2022年   93篇
  2021年   83篇
  2020年   66篇
  2019年   117篇
  2018年   65篇
  2017年   121篇
  2016年   132篇
  2015年   95篇
  2014年   99篇
  2013年   107篇
  2012年   192篇
  2011年   181篇
  2010年   133篇
  2009年   152篇
  2008年   113篇
  2007年   182篇
  2006年   181篇
  2005年   234篇
  2004年   188篇
  2003年   101篇
  2002年   82篇
  2001年   78篇
  2000年   83篇
  1999年   65篇
  1998年   59篇
  1997年   46篇
  1996年   47篇
  1995年   39篇
  1994年   32篇
  1993年   25篇
  1992年   23篇
  1991年   19篇
  1990年   25篇
  1989年   12篇
  1988年   13篇
  1987年   6篇
  1986年   6篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有3371条查询结果,搜索用时 15 毫秒
91.
采用改进CenterNet模型检测群养生猪目标   总被引:5,自引:4,他引:1  
为实现对群养环境下生猪个体目标快速精准的检测,该研究提出了一种针对群养生猪的改进型目标检测网络MF-CenterNet(MobileNet-FPN-CenterNet)模型,为确保目标检测的精确度,该模型首先以无锚式的CenterNet为基础结构,通过引入轻量级的MobileNet网络作为模型特征提取网络,以降低模型大小和提高检测速度,同时加入特征金字塔结构FPN(Feature Pyramid Networks)以提高模型特征提取能力,在保证模型轻量化、实时性的同时,提高遮挡目标和小目标的检测精度。该研究以某商业猪场群养生猪录制视频作为数据源,采集视频帧1 683张,经图像增强后共得到6 732张图像。试验结果表明,MF-CenterNet模型大小仅为21 MB,满足边缘计算端的部署,同时对生猪目标检测平均精确度达到94.30%,检测速度达到69 帧/s,相较于Faster-RCNN、SSD、YOLOv3、YOLOv4目标检测网络模型,检测精度分别提高了6.39%、4.46%、6.01%、2.74%,检测速度分别提高了54、47、45、43 帧/s,相关结果表明了该研究所提出的改进型的轻量级MF-CenterNet模型,能够在满足目标检测实时性的同时提高了对群养生猪的检测精度,为生产现场端的群养生猪行为实时检测与分析提供了有效方法。  相似文献   
92.
缺株玉米行中心线提取算法研究   总被引:1,自引:1,他引:0  
无人驾驶农机自主进行行驶路径检测和识别系统需要具备环境感知能力。作物行的中心线识别是环境感知的一个重要方面,已有的作物行中心线识别算法在缺株作物行中心线提取中存在检测精度低的问题。该研究提出了一种能够在缺株情况下提取玉米作物行中心线的算法。首先采用限定HSV颜色空间中颜色分量范围的方法将作物与背景分割,通过形态学处理对图像进行去噪并填补作物行空洞;然后分别在图像底部和中部的横向位置设置条状感兴趣区(Region of Interest,ROI),提取ROI内的作物行轮廓重心作为定位点。在图像顶端间隔固定步长设置上端点,利用定位点和上端点组成的扫描线扫描图像,通过作物行区域最多的扫描线即为对应目标作物行的最优线;将获取的最优线与作物行区域进行融合填充作物行中的缺株部位;最后设置动态ROI,作物行区域内面积最大轮廓拟合的直线即为目标作物行中心线。试验结果表明,对于不同缺株情况下的玉米图像,该算法的平均准确率达到84.2%,每帧图像的平均检测时间为0.092 s。该研究算法可提高缺株情况下的作物行中心线识别率,具有鲁棒性强、准确度高的特点,可为无人驾驶农机在作物行缺株的农田环境下进行作业提供理论依据。  相似文献   
93.
基于轻量级神经网络MobileNetV3-Small的鲈鱼摄食状态分类   总被引:1,自引:1,他引:0  
在集约化水产养殖过程中,饲料投喂是控制养殖成本,提高养殖效率的关键。室外环境复杂多变且难以控制,适用于此环境的移动设备计算能力较弱,通过识别鱼类摄食状态实现智能投喂仍存在困难。针对此种现象,该研究选取了轻量级神经网络MobileNetV3-Small对鲈鱼摄食状态进行分类。通过水上摄像机采集水面鲈鱼进食图像,根据鲈鱼进食规律选取每轮投喂后第80~110秒的图片建立数据集,经训练后的MobileNetV3-Small网络模型在测试集的准确率达到99.60%,召回率为99.40%,精准率为99.80%,F1分数为99.60%。通过与ResNet-18, ShuffleNetV2和MobileNetV3-Large深度学习模型相比,MobileNetV3-Small模型的计算量最小为582 M,平均分类速率最大为39.21帧/s。与传统机器学习模型KNN(K-Nearest Neighbors)、SVM(Support Vector Machine)、GBDT(Gradient Boosting Decision Tree)和Stacking相比,MobileNetV3-Small模型的综合准确率高出12.74、23.85、3.60和2.78个百分点。为进一步验证该模型有效性,在室外真实养殖环境进行投喂试验。结果显示,与人工投喂相比,基于该分类模型决策的鲈鱼投喂方式的饵料系数为1.42,质量增加率为5.56%。在室外真实养殖环境下,MobileNetV3-Small模型对鲈鱼摄食状态有较好的分类效果,基于该分类模型决策的鲈鱼投喂方式在一定程度上能够代替养殖人员进行决策,为室外集约化养殖环境下的高效智能投喂提供了参考。  相似文献   
94.
为提高诱虫板图像蔬菜害虫检测精度,针对背景区域容易导致误检的问题基于显著图分析技术构建了一种注意力深度网络害虫智能视觉检测方法。首先通过显著图筛选出粗候选区域;然后在粗候选区域内用全卷积神经网络精选出细候选区域;接着用神经网络分类器识别细候选区域害虫种类,得到含有冗余的若干检测框;最后用改进的非极大值抑制消除冗余检测框,实现诱虫板图像中目标害虫的检测。针对小菜蛾和瓜实蝇展开试验,获得86.4%的平均精度均值和0.111只的平均绝对计数误差均值,所提方法平均精度均值比Faster R-CNN和YOLOv4分别高2.74和1.56个百分点,平均绝对计数误差均值比Faster R-CNN和YOLOv4分别低0.006和0.003只;同时,消融试验中移除显著图注意力模块后平均精度均值下降了4个百分点、平均绝对计数误差均值增加了0.207只。试验结果表明,所提方法有效提高了诱虫板图像蔬菜害虫检测精度,其中,引入显著图注意力模块对提升检测精度有重要作用。  相似文献   
95.
基于语义部位分割的条纹斑竹鲨鱼体运动姿态解析   总被引:1,自引:1,他引:0  
条纹斑竹鲨具有较高的经济价值和医用研究价值。人工驯养对环境和温度等因素要求较高,时常出现大规模病死现象。利用视频图像量化分析鱼体运动行为,有助于进行异常识别和早期预警,将有效提高养殖养护水平。该研究针对人工驯养的条纹斑竹鲨鱼,提出一种基于深度神经网络的语义部位分割方法,并将分割结果应用于剖析条斑鲨鱼体运动姿态。首先,依据条斑鲨形态特征将其划分为7个可视的身体组成构件(头部、右胸鳍、左胸鳍、右腹鳍、左腹鳍、躯干、尾巴);再对全景养殖监控视频中抽取的476幅条斑鲨子图进行各部位的像素级标记,通过数据增强到1 944幅建立鱼体语义部位数据集,其中训练集为1166幅图像,测试集为778幅图像;然后,在语义分割网络模型基础上进行深度学习训练,使用深度学习框架对网络参数进行微调使得网络训练结果达到最优。最后,利用语义部位分割结果定位躯干和鱼头质心建立随体坐标,通过随体坐标的方向变化判明鱼体动作姿态。基于FCN-8s和Segnet两种深度网络模型进行了鱼体部位分割的对比试验,测试结果表明基于Segnet网络的分割方法在头部、右胸鳍、左胸鳍、右腹鳍、左腹鳍、躯干、尾巴部位的准确度分别高出FCN-8s深度网络1.50,4.70,6.95,6.56,6.01,0.85,0.84个百分点。语义部位分割结果能够有效判别条斑鲨鱼体目标的动作姿态,可为鱼体异常行为识别和进一步开展面向条斑鲨的动物行为学试验提供技术参考。  相似文献   
96.
为满足大蒜定向播种的农艺要求,针对现有大蒜鳞芽调整方法对杂交蒜适应性差的问题,该研究设计了一种基于Jetson Nano处理器的大蒜鳞芽朝向自动调整装置。采用双卷积神经网络模型结构,其中一个神经网络模型对大蒜是否被喂入进行实时监测,检测到大蒜喂入调整装置后,一个ResNet-18网络模型对蒜种鳞芽朝向进行判断,当鳞芽朝上时大蒜鳞芽调整机构打开Y型料斗使大蒜以鳞芽朝上的姿态直接落下,当鳞芽朝下时大蒜鳞芽调整机构翻转180°带动大蒜一起翻转后以鳞芽朝上的姿态落下,实现大蒜鳞芽朝向实时调整。神经网络模型推理及舵机控制采用英伟达边缘计算处理器Jetson Nano进行处理。利用离散元分析软件EDEM结合正交试验方法对调整装置的关键结构参数进行优化,并以杂交大蒜为试验对象进行台架试验,试验结果表明:大蒜鳞芽调整成功率为96.25%,模型推理时间0.045 s,平均每粒大蒜调整时间为0.785 s,满足大蒜播种机播种要求。该文研究结果可为解决杂交大蒜直立播种问题及边缘计算在精密播种设备中的应用提供有益参考。  相似文献   
97.
果实表型数据高通量、自动获取是果树新品种育种研究的基础,实现幼果精准检测是获取生长数据的关键。幼果期果实微小且与叶片颜色相近,检测难度大。为了实现自然环境下苹果幼果的高效检测,采用融合挤压激发块(Squeeze-and-Excitation block, SE block)和非局部块(Non-Local block, NL block)两种视觉注意机制,提出了一种改进的YOLOv4网络模型(YOLOv4-SENL)。YOLOv4模型的骨干网络提取高级视觉特征后,利用SE block在通道维度整合高级特征,实现通道信息的加强。在模型改进路径聚合网络(Path Aggregation Network, PAN)的3个路径中加入NL block,结合非局部信息与局部信息增强特征。SE block和NL block两种视觉注意机制从通道和非局部两个方面重新整合高级特征,强调特征中的通道信息和长程依赖,提高网络对背景与果实的特征捕捉能力。最后由不同尺寸的特征图实现不同大小幼果的坐标和类别计算。经过1 920幅训练集图像训练,网络在600幅测试集上的平均精度为96.9%,分别比SSD、Faster R-CNN和YOLOv4模型的平均精度提高了6.9百分点、1.5百分点和0.2百分点,表明该算法可准确地实现幼果期苹果目标检测。模型在480幅验证集的消融试验结果表明,仅保留YOLOv4-SENL中的SE block比YOLOv4模型精度提高了3.8百分点;仅保留YOLOv4-SENL中3个NL block视觉注意模块比YOLOv4模型的精度提高了2.7百分点;将YOLOv4-SENL中SE block与NL blocks相换,比YOLOv4模型的精度提高了4.1百分点,表明两种视觉注意机制可在增加少量参数的基础上显著提升网络对苹果幼果的感知能力。该研究结果可为果树育种研究获取果实信息提供参考。  相似文献   
98.
分析我校计算机教学中现代教育技术的应用现状及改进措施。从教育观念、教育体制、教学内容和教学方法等多方面提出如何充分利用现代教育技术促进我校计算机教学的改革,提高我校计算机公共教学和专业教学水平的措施。  相似文献   
99.
完整的水轮机特性曲线是水电站运行仿真和过渡过程计算的基础,然而厂家提供的水轮机模型综合特性曲线仅反映了水轮机高效率区域的特性,不能满足水轮机动态过程仿真需求。该研究提出了一种扩展方法:首先以零转速、零流量、飞逸曲线、零开度线、单位力矩交点为边界条件,作为划分特性曲线区域与约束各分区延拓范围的特征点,并依据内特性模型和外特性数据辨识水轮机结构参数,计算边界条件;然后针对不同区域的特点,提出不同拟合方法得到各区的特性曲线;最后对分区界线两侧拟合结果进行平滑连接,形成完整的可用于仿真分析的混流式水轮机特性曲线。对某水轮机进行实例分析,与典型外特性法和内特性法的对比表明,本文方法既保证了外特性试验数据处的拟合精度,又能反映水轮机的水力特性;与典型外特性法进行过渡过程实测反演对比可知,本文所提方法将最大蜗壳压力的相对误差从2.03%降至1.69%,小开度工况下区域平均蜗壳压力的相对误差从3.48%降至1.47%,动态过程时域响应更接近实测结果。本文特性曲线处理方法有利于提高过渡过程计算精度,也可为类似叶片式农业机械的设计及特性曲线处理提供参考。  相似文献   
100.
针对奶牛养殖场复杂环境下多目标奶牛嘴部自动跟踪及反刍监测的困难,该研究提出了一种基于嘴部区域跟踪的多目标奶牛反刍行为智能监测方法。在YOLOv4模型识别奶牛嘴部上下颚区域的基础上,以Kalman滤波和Hungarian算法跟踪上颚区域,并对同一奶牛目标的上颚和下颚区域进行关联匹配获取嘴部咀嚼曲线,以此获取反刍相关信息,从而实现多目标奶牛个体的嘴部跟踪和反刍行为监测;为解决奶牛快速摆头运动和棚舍栏杆遮挡引发奶牛标号变化的问题,提出未匹配跟踪框保持及扩大的方法。采集并选择实际养殖场环境下的反刍奶牛视频66段,对其中58段视频采取分帧操作得到图像,制作YOLOv4模型数据集,以其余8段视频验证跟踪方法和反刍行为判定方法的有效性。试验结果表明,YOLOv4模型对奶牛嘴部上颚、下颚区域的识别准确率分别为93.92%和92.46%;改进的跟踪算法可实现复杂环境下多目标奶牛嘴部区域的稳定跟踪,且有效解决了栏杆遮挡、快速摆头运动造成的奶牛标号变化现象,上下颚匹配率平均为99.89%,跟踪速度平均为31.85帧/s;由反刍行为判定方法获取的咀嚼次数正确率的平均值为96.93%,反刍时长误差的平均值为1.48 s。该研究可为实际养殖中多目标奶牛反刍行为的智能监测和分析提供参考,也可供其他群体动物运动部位的跟踪和行为监测借鉴。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号