首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   16篇
  国内免费   29篇
林业   6篇
农学   19篇
  15篇
综合类   64篇
农作物   24篇
水产渔业   13篇
畜牧兽医   69篇
园艺   13篇
植物保护   21篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   14篇
  2015年   7篇
  2014年   13篇
  2013年   19篇
  2012年   24篇
  2011年   25篇
  2010年   20篇
  2009年   18篇
  2008年   14篇
  2007年   20篇
  2006年   18篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
排序方式: 共有244条查询结果,搜索用时 125 毫秒
131.
Dairy cattle have traditionally been selected for their ability to produce milk and milk components. The traditional single-minded approach to selection of dairy cattle has now changed and secondary traits are being included in selection indices by decreasing the emphasis on production. Greater emphasis on non-production traits reflects the industry's desire for functional dairy cattle. Six broad categories of non-lactational traits are discussed in this review. They are: type; growth, body size and composition; efficiency of feed utilisation; disease resistance, e.g. udder health as measured by somatic cell score; reproduction; and management. Most of these traits can be found within selection indices worldwide, although relative emphasis varies.

The non-lactational traits mentioned above are quantitative, meaning that the phenotype in the whole animal represents the sum of lesser traits that cannot be easily measured. The physiological mechanisms that underlie quantitative traits are extremely complex. Genetic selection can be applied to quantitative traits but it is difficult to link successful genetic selection with the underlying physiological mechanisms. The importance that the bovine genome sequence will play in the future of the genetics of dairy cattle cannot be understated. Completing the bovine genome sequence is the first step towards modernising our approach to the genetics of dairy cattle.

Finding genes in the genome is difficult and scanning billions of base pairs of DNA is an imperfect task. The function of most genes is either unknown or incompletely understood. Combining all of the information into a useable format is known as bioinformatics. At the present time, our capacity to generate information is great but our capacity to understand the information is small. The important information resides within subtle changes in gene expression and within the cumulative effect that these have.

Traditional methods of genetic selection in dairy cattle will be used for the foreseeable future. Most non-lactational traits are heritable and will be included in selection indices if the traits have value. The long-term prognosis for genome science is good but advances will take time. Genetic selection in the genome era will be different because DNA sequence analysis may replace traditional methods of genetic selection.  相似文献   
132.
Differences in the early responses of two potato cultivars, Igor and Nadine, to two isolates of Potato virus Y (PVY), the aggressive PVYNTN and the mild PVYN, were monitored. Microarray and quantitative real‐time PCR analyses were carried out to identify differentially expressed genes after inoculation with each virus isolate. Additionally, symptom severity and development was observed and the amount of virus isolate accumulated in systemically infected leaves was evaluated, where a significantly higher amount of PVYNTN was detected. Microarray analysis revealed 572, 1288 and 1706 differentially expressed genes at 0·5, 12 and 48 h post‐inoculation, respectively in cv. Igor, with a similar pattern observed in cv. Nadine. Microarray and quantitative real‐time PCR results implied an earlier accumulation of sugars and lower photosynthesis in leaves inoculated with the aggressive isolate than in leaves inoculated with the mild isolate. The PVYNTN isolate did not activate early differential expression of the Fe‐superoxide dismutase and pectin methylesterase inhibitor (PMEI) genes, indicating a delay in plant response relative to that following PVYN inoculation. Differences in the expression of the β‐glucanase‐I gene were also observed in early plant responses to inoculation with each virus isolate.  相似文献   
133.
cDNA芯片筛选亚洲棉短绒分化发育相关基因   总被引:2,自引:0,他引:2  
 【目的】筛选亚洲棉短绒分化发育相关基因。【方法】利用cDNA芯片技术在棉纤维发育前期开花前3天(-3DPA)、开花当天(0DPA)、开花后3天(+3DPA)、5天(+5DPA)、7天(+7DPA)筛选野生型DPL971与其短绒突变体DPL972的差异基因。通过与模式植物拟南芥数据库相结合,找到与棉纤维起始发育相关基因,并通过RT-PCR和Real-Time PCR(QRT-PCR)验证部分侯选基因。【结果】筛选出与亚洲棉纤维起始分化发育相关基因8个,其中相对应的与拟南芥同源性较高的蛋白有7个,分别为KAK(DR461366)、MYB5(ES812048)、TTG1(ES811600)、MYB23(DR453866)、CSLD3(DR459646)、RHD2(DR461821)和ZWI(ES791383),这些基因在拟南芥的表皮毛起始发育过程中都起着重要的作用。RT-PCR和QRT-PCR结果表明MYB23、MYB5、TTG1、CSLD3、RHD2这5个基因在短绒突变体DPL972与其野生型DPL971的+3DPA胚珠中表达差异都有差异。【结论】上述结果表明这5个基因可能与短绒分化发育相关,第1个基因可能抑制短绒分化和发育,后4个则促进短绒分化和发育。  相似文献   
134.
拟南芥盐胁迫响应启动子的生物信息学分析   总被引:1,自引:0,他引:1  
本研究使用生物信息学方法分析了拟南芥盐胁迫响应的顺式作用元件.首先分析盐胁迫0.5 h、1 h的拟南芥全基因组芯片,得到627个盐胁迫上调基因和282个下调基因.然后使用MEME软件分析了盐胁迫响应基因的启动子,得到10个保守元件.通过显著性分布分析表明Motif_1\Motif_8\Motif_10显著分布于上调基因启动子中;Motif_1\Motif_10显著不分布于盐胁迫下调基因启动子中.Motif_1元件是G-box元件(ABRE(ABA Responsive Element)元件),大量分布于盐胁迫上调基因启动子中,广泛参与盐胁迫过程中ABA依赖的信号转导途径.Motif_8、Motif_10分别类似于ABRE元件和DRE(Dehydration-Responsive Element)元件,但由于和ABRE、DRE元件的保守序列不尽相同,Motif_8\Motif_10很有可能是新的盐胁迫响应元件.本研究对于研究拟南芥在盐胁迫应答过程中在转录水平上发生的调控过程具有重要帮助作用.  相似文献   
135.
为了解与家蚕第2白卵(w-2)性状形成相关的差异表达基因信息,以家蚕正常型黑卵及其第2白卵近等基因系的转色期蚕卵为材料,构建抑制消减杂交(SSH)文库,筛选差异表达基因。对SSH文库中部分克隆的测序分析表明,该文库对差异表达基因的富集性较好。随机挑选SSH文库中的300个克隆制作家蚕cDNA芯片,对家蚕正常型黑卵及第2白卵近等基因系转色期蚕卵进行检测,获得11个差异表达基因。对这11个差异表达基因进行实时荧光定量RT-PCR验证分析,其结果与芯片数据分析结果趋势一致,在正常型黑卵与第2白卵近等基因系之间,这些基因的表达差异为0.1倍至数千倍。  相似文献   
136.
利用基因芯片筛选茶树芽叶紫化相关基因   总被引:2,自引:1,他引:1  
采用基因芯片技术对龙井群体中紫芽资源和绿芽资源进行分析,探索茶树紫化相关的差异表达基因。结果检测到差异表达基因43个,其中上调表达基因17个,下调表达基因26个。以基因芯片中紫芽资源上调基因TC0002e03和下调基因TL016D09、TL011D06,及不变基因TL022H08、TL024B05为材料,用实时荧光定量方法验证基因芯片的结果,二者完全相符。根据基因芯片的实验结果,采用数据库查询方式对43个差异表达基因进行功能注释,结果表明差异表达基因主要与能量代谢、次生代谢和转录调控等分子功能有关,特别是在差异表达基因中还包含两个与花青素代谢途径直接相关的基因,苯丙氨酸解氨酶和花青素还原酶基因,同绿芽资源相比,它们在紫色资源中分别下调3.44倍和上调2.09倍;同时还筛选到两个可能调控花青素合成的转录因子MYB蛋白和WD40蛋白,分别上调2.25倍和2.54倍。这些研究结果将为深入理解茶树芽叶的紫化机理,克隆相关基因打下基础。  相似文献   
137.
138.
139.
140.
为了研究花生低温胁迫下的基因表达调控机理,以花生花育19为材料,通过低温处理后芯片杂交实验,筛选花生叶片中低温胁迫响应转录因子基因。结果表明,175个具有转录调控活性的基因在低温胁迫的花生叶片中表达变化量达到2倍以上,其中92个为上调基因,83个为下调基因。通过基因功能分类分析发现,这些基因中53个上调基因和46个下调基因编码转录因子。进一步分析发现,参与花生低温抗性调控的转录因子主要包括MYB、WRKY、NAC及AP2/ERF等家族蛋白。此外,一些不包含已知保守结构域的转录因子也参与了花生低温抗性调控。本研究为花生低温抗性调控研究提供了新的转录因子基因资源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号