首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2989篇
  免费   255篇
  国内免费   247篇
林业   199篇
农学   175篇
基础科学   221篇
  798篇
综合类   1663篇
农作物   120篇
水产渔业   6篇
畜牧兽医   116篇
园艺   121篇
植物保护   72篇
  2024年   117篇
  2023年   337篇
  2022年   337篇
  2021年   316篇
  2020年   261篇
  2019年   329篇
  2018年   231篇
  2017年   234篇
  2016年   213篇
  2015年   212篇
  2014年   140篇
  2013年   90篇
  2012年   85篇
  2011年   73篇
  2010年   57篇
  2009年   53篇
  2008年   62篇
  2007年   51篇
  2006年   38篇
  2005年   41篇
  2004年   27篇
  2003年   22篇
  2002年   22篇
  2001年   15篇
  2000年   14篇
  1999年   11篇
  1998年   18篇
  1997年   11篇
  1996年   13篇
  1995年   7篇
  1994年   6篇
  1993年   10篇
  1992年   10篇
  1991年   12篇
  1990年   6篇
  1989年   8篇
  1988年   1篇
  1986年   1篇
排序方式: 共有3491条查询结果,搜索用时 15 毫秒
71.
利用根箱试验方法比较了生物质炭和果胶对再生水灌溉下土壤—植物系统养分和重金属迁移特征的影响及差异性。结果表明,再生水灌溉不利于植物的生长,果胶和生物质炭两个处理相比,虽然植株生长无显著差异,但果胶处理植株的生长状况优于生物质炭处理;再生水灌溉时,果胶处理地上部生物量比对照增加了59.32%。与蒸馏水灌溉相比,再生水灌溉增加了根际土壤pH;灌溉水源相同时,果胶处理根际土壤pH略低于生物质炭处理。生物质炭和果胶都增加了土壤养分的含量,果胶对土壤碱解氮、有效磷和有机质的增加效果优于生物质炭,生物质炭对土壤有效钾的增加幅度大于果胶。生物质炭增加了植株的养分含量,果胶提高了养分的转运能力。生物质炭降低了土壤有效态Fe、Mn、Cu、Ni的含量,果胶增加了土壤有效态Fe、Mn、Cu、Pb、Ni的含量。果胶处理植株根系重金属含量普遍高于生物质炭处理,如蒸馏水灌溉下果胶处理根系Fe、Mn、Cu、Zn、Pb、Cd、Ni含量分别比生物质炭处理增加了165.29%,113.01%,21.16%,92.74%,14.61%,26.86%和53.43%,但Cu、Zn、Pb、Cd、Ni等元素在果胶处理的转运系数最低。该研究可为再生水灌溉下生物质炭和果胶在北方碱性土壤的农业安全利用提供理论依据。  相似文献   
72.
为生物炭应用于农田Cd污染的控制及治理提供相关科学依据,研究通过根箱试验,研究棉纤维生物炭对水稻根际和非根际土壤可交换态和不可交换态Cd含量及水稻植株中Cd分配的影响。研究表明:随着棉纤维生物炭的施用量增加,根际和非根际土壤可交换态Cd含量都呈下降趋势,同时不可交换态Cd含量都呈上升趋势。随着棉纤维生物炭的施用量增加,非根际土壤pH值呈逐渐上升趋势。非根际土壤pH值与可交换态Cd含量之间存在显著负相关关系,与不可交换态Cd含量之间存在显著正相关关系。可见,施用棉纤维生物炭可在一定程度上提高非根际土壤pH值,进一步降低了非根际土壤可交换态Cd含量;而根际土壤可交换态Cd含量的下降,主要受棉纤维生物炭的理化性质影响,受土壤pH值影响不大。随着棉纤维生物炭的施用量的增加,水稻各部位Cd含量及累积量都呈现下降趋势,其中籽粒Cd含量的下降幅度最大,为36.57%,根的Cd含量的下降幅度最小,为12.56%。由于茎鞘的生物量和Cd含量都较大,茎鞘中Cd累积量最高,平均为25.44μg plant-1,是籽粒的2.85倍。因此,在进行农田土壤Cd修复的同时,除了要关注农产品Cd污染,还要考虑如何妥善处理大量的富集Cd的农业废弃物,避免产生二次污染风险。  相似文献   
73.
2013—2016年连续4年对彭阳县炭洼小流域坡改梯地区重点作物产量的跟踪监测结果表明:坡改梯后主要作物产量总体呈显著增产趋势,与坡耕地相比,1~2年梯田小麦产量显著下降、3~5年梯田基本持平、5年以上梯田显著增产;不同年限梯田玉米产量均较坡耕地显著增加,1~2年、3~5年和5年以上梯田玉米产量比坡耕地分别增加58.68%、26.47%和26.73%,且1~2年梯田玉米增产尤为显著,3~5年和5年以上梯田玉米产量没有显著差异;坡改梯后马铃薯产量总体呈增加趋势,1~2年和3~5年梯田马铃薯产量比坡耕地增加显著,增产幅度分别为66.19%和15.10%,5年以上梯田增产幅度不大,只有1.56%。推荐1~2年梯田先锋种植作物次序为马铃薯、玉米,3~5年梯田为玉米、马铃薯,5年以上梯田为玉米、马铃薯、小麦。  相似文献   
74.
大豆秸秆生物炭对铅锌尾矿污染土壤的修复作用   总被引:3,自引:0,他引:3  
采用盆栽空心菜的方法,研究了大豆桔杆生物炭对铅锌尾矿污染土壤的修复作用。污染土壤中Cu、Zn、Pb和Cd含量分别为50,400,1 119,3.4mg/kg。结果表明:土壤无论是否受到铅锌尾矿污染,添加3%生物炭(w/w)均能显著提高土壤pH;3%生物炭能够抑制铅锌尾矿污染导致的土壤pH降低。大豆桔杆生物炭对尾矿污染土壤和未污染土壤中重金属有效态的影响不同,与未污染土壤相比,3%生物炭的钝化作用不能抵消铅锌尾矿污染导致的重金属有效态含量的增加。铅锌尾矿污染抑制空心菜生长;施加3%生物炭可以消除铅锌尾矿污染对空心菜生长的抑制作用。生物炭显著降低污染土壤空心菜根部重金属含量,而对地上部分的影响,不同元素表现出不同的特点;3%生物炭能够阻控铅锌尾矿污染土壤中Cu、Zn、Pb和Cd向空心菜地上部迁移富集。大豆桔杆生物炭对空心菜吸收重金属的影响,在铅锌尾矿污染土壤和未污染土壤上表现不同,存在元素之间的拮抗作用以及由于生物炭提高空心菜生物量所产生的稀释作用。在研究设置条件下,与未污染土壤相比,从空心菜生物量和可食部分吸收重金属含量来评价,施加3%大豆桔杆生物炭可以修复铅锌尾矿导致的土壤污染。  相似文献   
75.
生物炭提高花生干物质与养分利用的优势研究   总被引:3,自引:2,他引:3  
【目的】 以秸秆为原料生产生物炭可用于改良土壤和提高养分利用率,其与秸秆直接还田以及传统的制作堆肥后还田相比是否具有优势需要用试验来验证,本研究可为生物炭的高效利用提供理论依据。 【方法】 以传统猪厩肥和秸秆直接还田为对照,连续进行了8年的花生田间微区 (2 m2) 试验。在氮磷钾总投入量相等的条件下,共设4个处理,分别为秸秆还田 (CS)、猪厩肥 (PMC)、生物炭 (BIO) 和基于生物炭的炭基花生专用肥 (BF),每个处理重复3次,随机区组排列。试验于2016年在花生苗期、开花下针期、结荚期和饱果成熟期进行采样,测定植株茎叶、根和荚果的干物质和氮磷钾养分积累量,并计算对应的分配情况,探讨其对花生产量的影响。 【结果】 生物炭处理的花生产量显著高于其它处理,达到7231.7 kg/hm2;生物炭复合肥和猪厩肥处理则相对较低,分别是生物炭处理的82.4%和83.8%,秸秆处理产量最低,为5623.9 kg/hm2。猪厩肥处理的出仁率显著高于其它处理。生育前期各处理的干物质和养分主要在茎叶中积累,从结荚期开始逐渐向荚果中转移。与对照处理相比,复合肥处理的干物质和氮磷钾养分整株积累量在各时期均较高,尤其在结荚期以前保持了良好的荚果干物质和养分分配系数;生物炭处理则至饱果成熟期时呈现出明显优势,干物质积累量达到6295.0 kg/hm2,分别高出专用肥、秸秆和猪厩肥处理43.1%、36.1%和50.8%,茎叶分配比例高达34.5%,氮、磷、钾积累量持续增长至236.4 kg/hm2、 21.7 kg/hm2、77.8 kg/hm2,显著高于其它处理,但此时期荚果的氮、钾分配系数仅有0.83和0.52,低于对照处理(CS、PMC处理) 0.02~0.03和0.15~0.21。 【结论】 在氮磷钾养分投入量相等、不考虑有机碳投入量的前提下,施用生物炭、炭基复合肥和猪厩肥效果均显著好于秸秆直接还田;生物炭可显著提高花生整株的干物质量和氮磷钾积累量,特别是提高生育后期的干物质和养分分配量,促进产量的提高,对花生高产增效有良好的促进作用;炭基复合肥在花生进入结荚期后,对花生干物质及养分积累分配的促进作用减弱,效果与施用猪厩肥相当。因此,在本试验条件下,生物炭直接施用具有维持其养分长期稳定释放,提高花生产量和肥料养分利用率的作用。   相似文献   
76.
以黄河三角洲典型盐化潮土为供试土壤,设置12.5,25.0,50.0,100 g/kg 4个梯度生物炭添加量,通过盆栽试验研究不同添加量下生物炭对滨海盐渍土理化性质及玉米幼苗抗氧化系统的影响。结果表明:(1)与对照相比,随着生物炭添加量的增加,盐渍土的电导率、速效磷、速效钾、阳离子交换量及易氧化有机碳的含量呈现显著增加的趋势;不同生物炭添加量下,盐渍土的pH、碱解氮含量略有下降,但各添加量处理间差异不显著;而生物炭对盐渍土可交换态钠含量无显著影响。(2)添加适量生物炭(12.5,25.0,50.0 g/kg)可显著提高玉米幼苗叶片抗氧化酶活性和根系活力,并降低叶片超氧阴离子产生速率和过氧化氢含量,从而改善玉米幼苗的生理性状;然而,较高的生物炭添加量(100 g/kg)对幼苗抗氧化系统产生不良影响,造成植物体内活性氧的累积。因此,添加适量生物炭可以改善滨海盐渍土的理化性质,并在一定程度上有效改善盐胁迫下玉米幼苗的生理特性,但较高用量对作物抗氧化系统具有抑制作用。  相似文献   
77.
张萌  魏全全  肖厚军  赵欢  芶久兰 《土壤学报》2019,56(5):1201-1209
为探究生物质炭对贵州黄壤朝天椒减氮的施用效果,采用大田试验,研究了生物质炭与氮肥减量配施(CF_(100)B_0(化肥氮100%)、CF_(90)B_(10)(化肥氮90%+生物质炭氮10%)、CF_(85)B_(15)(化肥氮85%+生物质炭氮15%)、CF_(80)B_(20)(化肥氮80%+生物质炭氮20%))对贵州黄壤朝天椒产量、品质、养分积累和氮肥利用率的影响。结果表明:与常规施肥(CF_(100)B_0)处理相比,CF_(90)B_(10)处理可提高朝天椒产量,其中鲜椒增产7.3%、干椒增产2.5%,但是增产效果并不显著,而CF_(85)B_(15)和CF_(80)B_(20)处理的产量略有降低;生物质炭与氮肥减量配施处理可显著影响朝天椒果实中的硝酸盐和Vc含量,其中,CF_(90)B_(10)、CF_(85)B_(15)和CF_(80)B_(20)处理的硝酸盐含量降低了4.8%~8.9%,而CF_(90)B_(10)处理的Vc含量则较CF_(100)B_0处理提高了9.6%,但还原糖和游离氨基酸含量在各处理间无差异;此外,与CF_(100)B_0处理相比,生物质炭与氮肥减量配施可使氮肥偏生产力(PFP_N)提高2.08~2.62 kg·kg~(-1),以CF_(90)B_(10)处理最高,而氮肥农学效率(AE_N)和氮肥表观利用率(RE_N)则随着生物质炭替代化学氮肥比例的增加呈降低趋势,以CF_(90)B_(10)处理的AE_N和RE_N最高,分别为7.70 kg·kg~(-1)和40.3%。综上,生物质炭与氮肥减量配施可有效保证贵州朝天椒稳产增效,因此,短期条件下推荐生物质炭替代化学氮肥10%作为贵州黄壤朝天椒氮肥减施替代的最适比例。  相似文献   
78.
采用浸渍法制备了4种不同的生物炭-铁锰氧化物复合材料(F_1M_1BC_(10),F_1M_3BC_(20),F_1M_4BC_(25),F_3M_1BC_(20)),采用SEM,XPS和FTIR表征方法分析了几种复合材料与生物炭表面性质的差异,比较了4种不同配比生物炭-铁锰氧化物复合材料对砷(Ⅲ)去除性能,分析了不同投加量的吸附材料对砷(Ⅲ)去除效率及吸附量的差异。结果表明,与生物炭相比,炭、铁和锰不同配比的生物炭-铁锰氧化物复合材料比表面积明显增大,由61.0 m~2·g~(-1)增加到208 m~2·g~(-1),孔径变小,由23.7 nm下降到2.76 nm;碱性官能团含量明显增加;材料表面形成了MnOx、FeOx。与生物炭相比,4种生物炭-铁锰氧化物复合材料对砷(Ⅲ)的动力学吸附量大小与去除率顺序依次为F_1M_4BC_(25)F_1M_3BC_(20)F_1M_1BC_(10)F_3M_1BC_(20)BC。F_1M_4BC_(25)(m铁∶m锰∶m炭=1∶4∶25)是去除砷(Ⅲ)最优的复合材料,在用量为0.016 g·m L~(-1)时,对砷(Ⅲ)的去除率可达82.6%,是生物炭去除率的2.3倍。研究表明,生物炭-铁锰氧化物复合材料是一种潜在的去除水体砷污染的炭基材料。  相似文献   
79.
生物炭及炭基肥对棕壤持水能力的影响   总被引:8,自引:0,他引:8  
通过连续6年微区定位试验,以传统的土壤培肥方式作为对照,探究较长时间施用生物炭和炭基肥对土壤保水作用的影响,为生物炭农用提供理论参考。定位试验于2009年开始,连续6年进行了花生微区田间试验(2 m2)。试验设4个处理,分别为秸秆还田+NPK(CS)、施用猪厩肥+NPK(PMC)、生物炭+NPK(BIO)和炭基肥(BF)处理,在2014年花生的生育期间测定了表层土壤含水量、水分累积蒸发量和土壤理化性质。研究表明:土壤水分含量充足时,BIO和BF处理含水量与PMC处理接近,都高于CS处理;土壤含水量较低时,BIO和BF处理含水量低于CS和PMC处理。与秸秆还田和施用猪厩肥相比,生物炭处理可提高土壤供水数量但降低土壤保水能力。炭基肥处理降低了土壤供水数量和保水能力。  相似文献   
80.
为探讨生物炭长期施用对酸化茶园土壤改良和真菌群落结构的影响,分析了按生物炭用量0、2.5、5、10、20、40 t·hm-2施用5年后的茶园土壤性状和真菌群落结构变化.结果表明,施用生物炭5年后的茶园土壤pH提高了0.16~1.11,可溶性有机碳含量提高了52.6%~92.3%,而铵态氮和硝态氮含量以10 t·hm-2...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号