首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11338篇
  免费   3228篇
  国内免费   392篇
林业   515篇
农学   874篇
基础科学   160篇
  2296篇
综合类   2081篇
农作物   302篇
水产渔业   2279篇
畜牧兽医   3385篇
园艺   62篇
植物保护   3004篇
  2024年   55篇
  2023年   198篇
  2022年   233篇
  2021年   367篇
  2020年   736篇
  2019年   1186篇
  2018年   1021篇
  2017年   1114篇
  2016年   964篇
  2015年   920篇
  2014年   923篇
  2013年   1207篇
  2012年   1276篇
  2011年   936篇
  2010年   774篇
  2009年   474篇
  2008年   459篇
  2007年   337篇
  2006年   315篇
  2005年   267篇
  2004年   234篇
  2003年   168篇
  2002年   166篇
  2001年   166篇
  2000年   151篇
  1999年   54篇
  1998年   45篇
  1997年   52篇
  1996年   38篇
  1995年   36篇
  1994年   8篇
  1993年   16篇
  1992年   17篇
  1991年   11篇
  1990年   12篇
  1989年   10篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1979年   1篇
  1955年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Recent research shows that most soils are more or less water repellent. Already subcritical water repellency may cause incomplete soil wetting and preferential flow. Both processes potentially reduce the residence time of water and solutes in the vadose zone, resulting in an enhanced risk of groundwater contamination. The objective of the present paper is, therefore, to evaluate the impact of reduced soil wettability on the soil water infiltration rate and to investigate the tendency towards preferential flow with the analysis of the immobile water content in the infiltration zone. In november 2002, a field experiment was done in a coniferous forest, 30 km N of Hannover, Germany. Soil hydrophobicity was quantified by measuring the contact angles. The hydraulic conductivity of the podsolic sandy soil was measured depth‐dependent with a double‐ring tension infiltrometer in three soil horizons. To quantify possible preferential‐flow effects, a LiBr‐Tracer was added to the infiltrating water to evaluate the mobile water‐content fraction after infiltration. Additionally, infiltration rates of water were compared with infiltration rates of ethanol which were determined after water infiltration at the same locations. Results show that the actual water repellency of field‐moist soil was mainly subcritical (contact angle <90°). Water infiltration rates were reduced due to subcritical repellency by a factor of 3–170 compared with ethanol infiltration rates (exclusion of wetting effects). This spatially variable infiltration behavior was not clearly reflected neither by the small‐scale contact‐angle measurements nor by the analysis of the average immobile soil water content in the infiltration zone. We conclude that this specific infiltration behavior of water caused by small‐scale wettability effects may temporarily reduce the local connectivity of water‐flow pathways.  相似文献   
992.
Rheological methods are applied whenever flow behavior of substances needs to be investigated on a particle‐to‐particle scale executed by a parallel‐plate rheometer. Under oscillation, mechanical effects due to trafficking or vibrations caused by agricultural and forest machinery can be simulated by conducting amplitude‐sweep tests. Hooke's law of elasticity, Newton's law for ideal fluids (viscosity), Mohr‐Coulomb's equation, and, finally, Bingham's yielding are well‐known relationships and parameters in the field of rheology. This paper aims to introduce rheometry as a suitable method to determine the mechanical behavior of salt‐affected soils when subjected to external stresses. Potassium‐treated loamy sand from Halle and loamy silt from Kassel, both sites located in Germany, as well as loess from Israel, saturated with NaCl solutions in several concentrations were analyzed. From the stress‐strain–relationship parameters like the storage modulus G′ and the loss modulus G″, yield stress τy and the linear viscoelastic (LVE)–deformation range including the deformation limit γL, i.e., the transition from an elastic to a viscous state, were determined and calculated, respectively. With respect to salt effects, amplitude‐sweep tests on originally CaCO3‐rich Avdat Loess show an increasing stability if saturated with higher NaCl concentrations. Comparable tests with K+‐rich substrates from Halle and Kassel evinced similar tendencies including the phenomenon of a critical K+ content, which becomes more obvious in case of the drained (–60h Pa) loamy‐silt samples from Kassel. Nevertheless, a higher microstructural stability is given in both substrates from Halle and Kassel, affected by different water contents, in general, which influence the exchange and availability of cations. The results verify that oscillatory tests are applicable for retracing salt‐induced effects, beside those ones, which are influenced by texture, current water content, and/or further chemical parameters.  相似文献   
993.
The influence of fertilization on organic‐carbon fractions separated by density and particle size in Heilu soil (Calcic Kastanozems, FAO) was investigated in a 20‐year (1979–1999) long‐term experiment on the Loess Plateau of China. Compared to an unfertilized treatment, N application alone did not increase total organic carbon (TOC) and its fractions of density and particle size. However, the treatment of N + P fertilization significantly increased salty‐solution–soluble organic carbon (SSOC), microbial biomass C (MB‐C), and organic C associated with fine silt. When manure was applied alone and in combination with N and P fertilizer, the light fraction of organic C (LFOC), SSOC, and MB‐C were increased significantly, and the TOC was as high as that of a native Heilu soil. Organic C associated with different particle‐size fractions was also increased significantly, and the allocation of C among the fractions was altered: the proportions of C in sand (>50 μm), coarse‐silt (20–50 μm), and fine‐clay (<0.2 μm) fractions were increased whereas fine‐silt (2–20 μm) and coarse‐clay (0.2–2 μm) fractions were decreased. It is concluded that N fertilizer alone is not capable of restoring organic‐matter content in the Heilu soils of the Loess Plateau and that C‐containing material like manure and straw is necessary to produce significant increase in soil organic carbon in these soils.  相似文献   
994.
Tolerance to zinc (Zn) deficiency was examined for three wheat (Triticum aestivum L.) and three barley (Hordeum vulgare L.) varieties grown in chelator‐buffered nutrient solution. Four indices were chosen to characterize tolerance to Zn deficiency: (1) relative shoot weight at low compared to high Zn supply (“Zn efficiency index”), (2) relative shoot to root ratio at low compared to high Zn supply, (3) total shoot uptake of Zn under deficient conditions, and (4) shoot dry weight under deficient conditions. Barley and wheat exhibited different tolerance to Zn deficiency, with barley being consistently more tolerant than wheat as assessed by all four indices. The tolerance to Zn deficiency in the barley varieties was in the order Thule=Tyra>Kinnan, and that of wheat in the order Bastian=Avle>Vinjett. The less tolerant varieties of both species accumulated more P in the shoots than the more tolerant varieties. For all varieties, the concentrations of Mn, Fe, Cu, and P in shoot tissue were negatively correlated with Zn supply. This antagonism was more pronounced for Mn and P than for Cu and Fe. Accumulation of Cu in barley roots was extremely high under Zn‐deficient conditions, an effect not so clearly indicated in wheat.  相似文献   
995.
The soil‐plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg–1 and 50 mg kg–1 of each element. Soil‐plant transfer coefficients ranged between 0.12–19.10 (Cs) and 1.48–146.10 (Sr) for lettuce and 0.09–13.24 (Cs) and 2.99–93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P ≤ 0.05) differences between soil‐plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60 % of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil‐plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil‐plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80 % of total data variance, and were the best predictors for soil‐plant transfer. The different varieties of lettuce and radish gave different responses in soil‐plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30 % of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil‐plant transfer of Cs and Sr in one soil could have an increased soil‐plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant‐excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.  相似文献   
996.
The amounts of N2O released in periods of alternate freezing and thawing depend on site and freezing conditions, and contribute considerably to the annual N2O emissions. However, quantitative information on the N2O emission level of forest soils in freeze‐thaw cycles is scarce, especially with regard to the direct and indirect effect of tree species and the duration of freezing. Our objectives were (i) to quantify the CO2 and N2O emissions of three soils under beech which differed in their texture, C and N contents, and humus types in freeze‐thaw cycles, and (ii) to study the effects of the tree species (beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst.)) for silty soils from two adjacent sites and the duration of freezing (three and eleven days) on the emissions. Soils were adjusted to a matric potential of –0.5 kPa, and emissions were measured in 3‐hr intervals for 33 days. CO2 emissions of all soils were similar in the two freeze‐thaw cycles, and followed the temperature course. In contrast, the N2O emissions during thawing differed considerably. Large N2O emissions were found on the loamy soil under beech (Loam‐beech) with a maximum N2O emission of 1200 μg N m–2 h–1 and a cumulative emission of 0.15 g N m–2 in the two thawing periods. However, the sandy soil under beech (Sand‐beech) emitted only 1 mg N2O‐N m–2 in the two thawing periods probably because of a low water‐filled pore space of 44 %. The N2O emissions of the silty soil under beech (Silt‐beech) were small (9 mg N m–2 in the two thawing periods) with a maximum emission of 150 μg N m–2 h–1 while insignificant N2O emissions were found on the silty soil under spruce (0.2 mg N m–2 in the two thawing periods). The cumulative N2O emissions of the short freeze‐thaw cycles were 17 % (Sand‐beech) or 22 % (Loam‐beech, Silt‐beech) less than those of the long freeze‐thaw cycles, but the differences between the emissions of the two periods were not significant (P ≤ 0.05). The results of the study show that the amounts of N2O emitted in freeze‐thaw cycles vary markedly among different forest soils and that the tree species influence the N2O thawing emissions in forests considerably due to direct and indirect impacts on soil physical and chemical properties, soil structure, and properties of the humus layer.  相似文献   
997.
Farmers in Ghana use a variety of soil‐fertility management practices to optimize the benefits of shifting cultivation and/or to intensify their production. The research question was to analyze the relationship between these practices and the availability of the production factors land, labor, and capital. A farm survey along a gradient through SW Ghana showed that there is only a weak link between the intensification of traditional farming systems, population pressure, and reduced fallow periods as long as shifting cultivation is possible and common. Even where fallow periods reach a cut‐off point, farmers might look for land in remoter areas or invest in off‐farm activities. Only where market proximity supports the production of high‐value crops, investment flows are used to maintain continuous cultivation on favorable production sites, especially those with water access. The results verify the validity of the framework of agricultural‐systems dynamics in W Africa, developed by the International Institute of Tropical Agriculture (IITA) and the importance to distinguish between population‐driven and market‐driven situations. Both meet in periurban areas, which make them hot spots for research and development, while support for intensification is likely to fail where markets are far and shifting cultivation still an option.  相似文献   
998.
拉萨河流域非点源污染输出风险评估   总被引:7,自引:0,他引:7  
有效识别流域非点源污染高风险区,对污染控制与管理以及水环境质量改善具有重要意义。该研究以拉萨河流域为研究对象,构建包括降雨、地形和施肥影响因子的输出风险模型,识别流域各级非点源污染输出风险的地域单元。结果表明:1996年和2010年,非点源污染输出风险概率分别为50.0%和46.3%;非点源污染风险处于较高以上程度的区域面积分别为12 985.8和11 628.0 km2,占全区总面积的38.9%和34.9%;与1996年相比,2010年非点源污染风险程度由低级别向高级别转换的总面积约为6 674.3 km2。拉萨河流域非点源污染发生的风险概率为中等,风险程度在局部范围内有所下降,主要表现在高风险区域面积减少、低风险区域面积增加,但是中等和较高风险区域面积有增加趋势。土地利用变化、农业生产和水土流失是非点源污染发生的主要原因,应巩固生态环境综合治理成果,提前应对可能出现的非点源污染问题,制定生态农业发展规划,营造控制非点源污染迁移的植被缓冲带。  相似文献   
999.
Application of legume green manure (GM) is suggested to be effective in increasing the availability of native soil phosphorus (P) and the dissolution and utilization of phosphate rock (PR)‐P by food crops. Experiments were conducted to study the dynamics of extractable P (P extracted by Bray‐1‐extracting solution) of an Ultisol amended with or without GM residues of contrasting P concentrations in the absence of growing plants. In two separate experiments, GM residues of Aschynomene afraspera (a flood‐tolerant legume) and of Crotalaria micans (upland) with varying P concentrations were added to an acidic soil amended with PR‐P or triple superphosphate (TSP) in plastic bottles. Soil moisture was brought to field capacity of the soil in the upland experiment and saturated with distilled water in the lowland setup. This was done to simulate aerobic upland and anaerobic lowland soil conditions in the relevant plastic bottles. Only P concentration of the residues added varied, while lignin and C : N ratios were similar. A temperature of 25°C was maintained throughout the experiment. Changes in soil extractable Bray‐1‐P were measured at the end of the incubation period (60 or 80 d). In the aerobic soils, extractable P in the combined PR+GM or TSP+GM treatments was significantly lower than in the PR‐ or TSP‐ treated soils. The amendment with GM residues alone significantly increased Bray‐1‐P over the unamended control in the case of the inorganic P‐fertilized GM residues. The trend in extractable P was similar in the soils incubated under anaerobic conditions. However, in the case of PR, concentrations of P extracted by Bray‐1 solution did not significantly change in the presence or absence of GM. The results suggest that the incorporation of GM residues with low P concentration does not lead to a net P release in upland or lowland soils. These results have implications for nutrient cycling in farming systems in W Africa as most of the soils are poor and very low in available P.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号