首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   2篇
综合类   19篇
水产渔业   60篇
畜牧兽医   1篇
  2016年   2篇
  2014年   7篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   2篇
  2008年   19篇
  2007年   4篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2001年   4篇
  1999年   2篇
  1995年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
21.
微绿球藻、隐藻、颤藻的种间竞争关系   总被引:2,自引:0,他引:2  
采用陈海水配制的无机培养液,添加营养盐的无机培养液和对虾养殖池水3种培养液,分别对微绿球藻(Nannochloropsis oculata)、隐藻(Dyptomonas eyosa)和颤藻(Oscillatoria sp.)进行单培养和混合培养,探讨3种微藻的增殖规律和相互关系.观测各处理组微藻的生长状况,并以Lotka-Volterra的双种竞争模型为基础,计算3种微藻在生长拐点后各取样点的竞争抑制参数.结果显示,在各处理组中,实验前期微绿球藻和隐藻对颤藻的生长都具有一定的促进作用,颤藻在混合培养组中的生物量大于单培养组,而微绿球藻和隐藻的最大生物量均出现在其单培养组.在各组生长拐点后,微绿球藻对颤藻的影响较小,隐藻对颤藻的抑制作用明显,各取样点隐藻对颤藻的竞争参数远大于微绿球藻对颤藻的竞争参数(P<0.05);颤藻对微绿球藻有较小的抑制作用,而对隐藻的抑制作用明显,各取样点颤藻对隐藻的竞争参数均为各组的最大值.实验结果表明,3种微藻按竞争力从大到小依次为颤藻,隐藻,微绿球藻.颤藻对隐藻和微绿球藻有较强的抑制作用,而微绿球藻和隐藻之间的竞争抑制作用较弱,能够达到"共存"状态.  相似文献   
22.
自2008年4月至8月,在广东省汕尾市红海湾凡纳滨对虾(Litopenaeus vannamei)高位池养殖基地全程采集养殖池塘水样,检测水体细菌类群和理化因子,分析养殖过程中细菌类群的数量变化规律及其与环境因子的关系。结果显示,养殖过程中水体异养细菌、弧菌(Vibrio)和芽孢杆菌(Bacillus)的数量波动性较大,其中异养细菌波动范围1.35×10^4~1.39×10^6cfu·mL^-1,平均4.73×10^5cfu·mL^-1;弧菌波动范围1.05×10^3~5.20×10^4cfu·mL^-1,平均1.80×10^4cfu·mL^-1;芽孢杆菌波动范围0.11×10^3~4.30×10^3cfu·mL^-1,平均6.6×10^2cfu·mL^-1;粪大肠菌群(fecalcoliform)大多在1.0×10^2cfu·L^-1以内,平均0.97×10^2cfu·L^-1,远低于无公害食品海水养殖用水水质标准。对细菌与理化因子的单因子分析显示,异养细菌与溶解氧(DO)呈显著的负相关性(P〈0.05),弧菌与pH呈极显著的负相关性(P〈0.01),与化学需氧量(COD)和总磷(TP)呈显著的正相关性(P〈0.05)。多因子偏相关分析显示,异养细菌和弧菌与DO、pH、COD、TP的相关关系均不显著(P〉0.05)。结果表明,调查的养殖池塘对虾生长良好,该养殖池塘是安全、基本健康的系统,水环境中细菌数量受养殖系统中生物、环境因子及人为因素的影响和制约。  相似文献   
23.
运用综合对比分析法,对黄鳍鲷(Sparuslatus)养殖中定期泼洒地衣芽孢杆菌(Bacillus lichenformis)De的应用效果进行了探讨。结果表明,施用地衣芽孢杆菌De可在一定程度上优化水体环境和养殖生产性能,使养殖黄鳍鲷的成活率、体长增长率和体质量增长率分别提高18.2%、21.0%和312%;显著降低水中氨氮(NH3-N)、亚硝酸盐(NO2^-N)、活性磷酸盐(PO;一一P)质量浓度及底泥中有机碳的质量分数(P〈0.05),其中养殖前、后期的底泥有机碳质量分数分别较对照组降低49.77%和22.63%,NO2^-N、PO4^3-P质量浓度则总体较对照组降低25.82%和41.00%,NH3-N质量浓度在养殖前、中和后期较对照组降低36.33%、18.10%和14.28%;水体中弧菌数量在养殖后期较对照组降低61.76%,底泥中的总异养细菌数量在养殖中、后期较对照组提高38.61%,整个养殖期间水体及底泥中的芽孢杆菌数量分别较对照组提高15.34%和26.37%。  相似文献   
24.
斑节对虾养殖池塘藻-菌关系初探   总被引:26,自引:2,他引:26       下载免费PDF全文
本研究通过对斑节对虾养殖系统中的异养细菌、浮游微藻进行为期3个月的监测,发现浮游微藻和异养细菌的总量都表现为养殖后期高于养殖前期,其中浮游微藻增加了2个数量级,异养细菌增加了1个数量级,施放有益芽孢杆菌群对池塘菌群和藻群的变动有明显的影响。施放有益芽孢杆菌群的池塘,异养细菌总数略低,弧菌数量维持在10^3 CFU/mL以下,浮游微藻平稳增长,蓝藻占20%以下;对照池异养细菌的总数略高,弧菌数量达到10^3 CFU/mL,浮游微藻数量波动,养殖后期蓝藻占60%,为绝对优势种群。表明有益芽孢杆菌群有促进浮游微藻平稳繁殖的作用,但对浮游蓝藻和弧菌的繁殖起抑制作用,浮游蓝藻与弧菌之间具有一定的繁殖相关性。  相似文献   
25.
笔者总结在对虾越冬棚养殖生产中的实践,现将提高越冬棚养殖成功率的几个关键措施介绍如下: 一、虾池大小 越冬池塘面积一般不应过大,以8亩以内为好,目的是减少水面跨度、令越冬棚较牢固抵御风吹雨打,利于保温通风、调控水质和管理。  相似文献   
26.
胶红酵母(Rhodotorula mucilaginosa)营养成分分析   总被引:1,自引:0,他引:1  
为分析胶红酵母(Rhodotorula mucilaginosa)的营养水平,评价其作为饲料原料的营养价值和开发前景,对其常 规营养成分、氨基酸、脂肪酸、茁-胡萝卜素、维生素E、核苷酸和虾青素含量进行了测定。结果显示,胶红酵母的粗蛋白、粗 脂肪、总糖、灰分的质量分数分别为49.2%、1.5%、22.3%和7.9%。共检出16 种常见的氨基酸,包括7 种人体必需氨基酸, 占氨基酸总量的36.77%。检出6 种脂肪酸,分别为十四酸、十六酸、十八酸、油酸、亚油酸和亚麻酸,含量分别为0.29%、 8.64%、5.41%、35.38%、28.97%和21.31%。茁-胡萝卜素、维生素E、核苷酸和虾青素的含量分别为1.40、172.00、170.00、1.00 mg/kg。结果表明,胶红酵母的营养价值较高,是较好的饲料原料,可用作鱼粉等蛋白源的替代物,具有很好的市场前景和 开发潜力。  相似文献   
27.
PS2菌株是从虾塘富集、分离、筛选出的一株光合菌,具有高效净化养殖水质的作用。经形态学观察及生理生化特性的实验,鉴定其为荚膜红假单胞菌。PS2菌株可利用的底物范围较广,可利用大多数低分子的有机酸、糖醇类等,这对养殖水质的净化具有重要的作用。实验采用光吸收法测定了环境因子温度、盐度、pH、光照度及溶氧对菌株生长的影响.结果表明:PS2菌株可适应的温度、盐度、pH范围分别为20~40℃、0~40.0、6.0~9.0。最适的温度30℃、盐度10、pH为7.0;光照度500~5000lx范围内菌都可生长,在此范围内,光照度越强,菌生长越快;PS2菌株可在明处进行厌气性光合生长,在暗处进行需氧性兼性生长,养殖池塘的环境条件适宜PS2菌生长的条件。实验测定的PS2菌株的最适生长条件可作为本菌株大规模生产培养的技术参数。  相似文献   
28.
广东对虾养殖环境污染及防控对策   总被引:3,自引:0,他引:3  
分析了对虾养殖生产的外源污染、内源污染及养殖废水(废物)污染等环境污染状况,从及时降解转化养殖代谢产物、减少饲料投喂污染、妥善使用安全的养殖投入品、养殖废水(废物)无害化处理等方面提出了防控养殖环境污染的对策,为对虾的健康、安全养殖和可持续发展提供借鉴。  相似文献   
29.
引入养殖工程化设计和HACCP管理理念,集成南方室外对虾工程化无公害养殖技术,其1年3茬的产量达5~7 kg/m2,年产量可提高30%以上,对虾收获避开了市场收虾的高峰期,使对虾售价平均提高3%,年经济效益可提高70%以上,从而有效提高生产效益.  相似文献   
30.
益生菌D-1液体发酵工艺的研究   总被引:1,自引:0,他引:1  
为提高菌体的得率和芽孢转化率,进行了菌株D1最佳培养条件参数和培养基优化的研究及测定此条件下的生长曲线。通过研究发酵温度、接种量、培养基初始pH、溶解氧等因素对菌株D1生长的影响,确定最佳培养条件为:培养温度30℃,培养基初始pH7.0,接种量5%(相对摇瓶装液量),装液量100mL/500mL。在发酵基础培养基成分保持不变的情况下改变氮源、碳源、生长因子、无机盐单因子进行单因子试验,采用L9(3)4正交表设计实验,进行培养基优化,确定最佳培养基配比为玉米淀粉2%,蛋白胨2.5%,NaH2PO40.8%,玉米浆1.5%,MgSO4·7H2O0.05%,3.08%MnSO4水溶液0.1%。在最佳培养条件下,用最优培养基测定了菌株D1的生长曲线,并确定了菌株D1的最佳种龄为18~20h,生产收获时间为26h。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号