首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
林业   1篇
  11篇
  2022年   1篇
  2013年   5篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
  2000年   1篇
  1985年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
We studied the quantitative and qualitative changes of soil organic matter (SOM) due to different land uses (arable versus grassland) and treatments (organic manure and mineral fertilizer) within an agricultural crop rotation in a long‐term field experiment, conducted since 1956 at Ultuna, Sweden, on a Eutric Cambisol. The organic carbon (OC) content of the grassland plot was 1.8 times greater than that of the similarly fertilized Ca(NO3)2 treated cropped plots. The comparison of two dispersion techniques (a low‐energy sonication and a chemical dispersion which yield inherent soil aggregates) showed that increasing OC contents of the silt‐sized fractions were not matched by a linear increase of silt‐sized aggregates. This indicated saturation of the aggregates with OC and a limited capacity of particles to protect OC physically. Thermogravimetric analyses suggested an increase of free organic matter with increasing OC contents. Transmission FT‐IR spectroscopy showed relative enrichment of carboxylic, aromatic, CH and NH groups in plots with increasing OC contents. The silt‐sized fractions contained the largest SOM pool and, as revealed by 13C NMR spectroscopy, were qualitatively more influenced by the plant residue versus manure input than the clay fractions. Alkyl and O‐alkyl C in the silt‐sized fractions amounted to 57.4% of organic carbon in the animal manure treated plots and 50–53% in the other treatments.  相似文献   
2.
A long-term field experiment was initiated in November, 1967 at Research Area of Department of Soil Science to study the response of nitrogen to pearl millet-wheat cropping system at various doses and modes of farmyard manure application. The soil organic carbon increased with farmyard manure application and ranged from 0.68% in control to 1.82% in the plot receiving the highest annual dose (90 Mg ha?1) of farmyard manure. To study the contribution of farmyard manure on the productivity of pearl millet and wheat crops, the constants (intercept and slope) were determined between the grain yield of pearl millet and wheat crops with increasing dose of fertilizer nitrogen. Another linear regression was fitted between the intercept of the linear model and the soil organic carbon content. It has been observed that with each unit increase in the soil organic carbon, the productivity of pearl millet increased by 273 kg ha?1 and that of wheat by 1591 kg ha?1. The regression between the slope and soil organic carbon was linear in case of pearl millet (R2 0.49) but in case of wheat there was no relationship.  相似文献   
3.
The present study evaluated the effect of fertilizer amendments (organic manure and mineral fertilizers), management practices (fallow and untilled vs. cropped and tilled) on changes of N in bulk soil and N associated with different particle‐size fractions. The long‐term field experiment was conducted since 1962 in Gumpenstein, Austria, on a Dystric Cambisol. The N content of the topsoils changed distinctively during 28 and 38 yr of treatments under both fallow and cropped management practices. Highest increase in total N content was found in animal‐manure (liquid)‐treated plots. The remaining ranking was: animal manure (solid) > cattle slurry > half cattle slurry + straw = PK = NPK. Quite short N‐half‐life values of around 2 yr were found for the cattle‐slurry application, while animal manure exhibited longer N‐half‐lives of around 8 yr. Crop removal of N and mineralization losses in cropped plots obviously were higher than N losses from the bare soil plots lacking a plant cover to keep N in the system. This was confirmed by a consistent shift in the natural 15N abundances. Comparing the mean N contribution of particle‐size fractions to the total N amounts revealed the following ranking after 28 and 38 yr of different treatments: silt > clay > fine sand > coarse sand, with small exceptions. Particle‐size separates showed more significant responses to changes in the N dynamics of the system due to the various treatments than the bulk soil and can be regarded as the better indicators in this respect.  相似文献   
4.
Bioconversion of farm wastes with agro-industrial wastes into enriched compost is an important possibility in need of research. In this article, changes in chemical and microbiological parameters were evaluated to determine the maturity of composts prepared from mixture of farm and agro-industrial wastes over a period of 150 days. Seven different composts were prepared by using a mixture of different farm wastes with or without enrichment with rock phosphate (RP), agro-industrial wastes and the inoculation of microorganisms. As composting proceeded, the organic C, water-soluble C (WSC), bacterial and fungal counts decreased, whereas total N, P, electrical conductivity (EC) and actinomycetes count increased gradually. Our results suggest that WSC <1%, C:N ratio < 20, neutral pH and a decrease in bacteria and fungal counts, along with an increase in actinomycetes count and stability at the end of composting, may be accepted as an indicator of compost maturity. Changes in organic C, EC, total N and P concentrations over time also proved to be reliable indicators of the progress of the composting process for establishing stability and compost maturity. Addition of RP, agro-industrial wastes and inoculation of microorganisms showed potential in improving the N and P contents of the composts.  相似文献   
5.
The capability of organic wastes to release available N in soil varies largely, depending on their source and form of production, or rather on their composition and biodegradability. Our purpose was to predict mineralization rates of different materials using their analyses joined with a simulation model, and to evaluate the influence of soil type and application rate of the organic materials on N and C transformations in soil. Four organic materials, sewage sludge (SS), sewage sludge compost (SSC), cattle manure compost (CMC), hen and cattle manure compost (HCMC), were applied to two soils at rates of 2 and/or 4%. The soils were incubated aerobically for 168 days at 30°C, during which CO2 evolution rates and mineral-N concentrations were measured periodically. Hot water extractable C and N of all organic amendments correlated well with short term C and N mineralization, except HCMC that immobilized N although its soluble N content was large. NCSOIL, a computer model that simulates C and N cycling in soil with organic amendments, predicted well C and N mineralization of SS, SSC and CMC when considered as three-pool materials that decomposed at specific rates of 0.4, 0.024 and 10?4 d?1, using hot water soluble C and N as the labile pool. N immobilization by HCMC could be simulated only if the distribution of N between the labile and resistant pools was derived by optimization of NCSOIL, while hot water soluble C was labile. Laboratory methods to determine an intermediate pool or components that contribute to immobilization are required for improving the predictions of C and N mineralization from organic amendments.  相似文献   
6.
 Nitrogen mineralization was measured in three permanent pastures – either fertilized or unfertilized grass, or a mixed grass-clover sward – which were further amended with either fertilizer or cattle dung over a summer growing season. Measurements were made at 4-weekly intervals from June to October. Rates of net mineralization were similar in each of the background treatments (overall mean 0.99±0.091 kg N ha–1 day–1) and did not change markedly during the experiment. From the second sampling (July) onwards, rates of mineralization in all the dung treatments were higher than in the control by a factor of up to 2. In the fertilizer-amended treatments, rates were also consistently (but not significantly) higher than in the control. However, the relatively small effect of fertilizer detected at each sampling had a significant cumulative effect by the end of the experiment. There was no interaction between the background and current treatments. Potential mineralization, measured by anaerobic incubation, increased in all the treatments over the period of the experiment, showing an accumulation of readily mineralizable residues. Total N mineralized and the N accumulated during the experiment were calculated and compared. This approach suggests that potential measurements could provide a good estimate of changes in soil N supply that would not be otherwise detectable in changes in soil total N in the short-term. Received: 12 June 2000  相似文献   
7.
To find out the effect of P and Zn levels on dry matter yield, concentration and uptake of P and Zn in cowpea, a pot experiment was conducted in greenhouse. Phosphorus and zinc were added at the rate of 0, 20, 40, 80 and 160 ppm P and 0, 2.5, 5, and 10 ppm Zn, respectively. Response of P and Zn on dry matter yields of shoots and roots at 40 days and grain yield at maturity was observed upto 80 ppm P and 5 ppm Zn, respectively, and further increase in their levels decreased the yields. The addition of 10 ppm Zn decreased and 2.5 ppm Zn increased P concentration in different plant parts. The application of P decreased Zn concentration in different plant parts mainly at maturity stage. The available P and Zn at each harvesting stage were not affected by application of Zn and P, respectively, suggesting that P-Zn interaction occurred somewhere in the plants not in the soil.  相似文献   
8.
Laboratory indices (KCl extraction, thermal fractionation, pepsin extraction, C:N ratio and N mineralization) of organic materials were compared with plant availability of mineral-N produced from organic-N in a greenhouse experiment. Six types of organic materials [farmyard manure (FYM), pig manure (PG), poultry manure (PL), sewage sludge (SS), pressmud (PM) and compost (CP)] were compared with urea as a chemical reference fertilizer. Relative effectiveness of organic N (REo) was used to compare the fraction of N extracted with different N availability laboratory indices. REo values of organic materials ranged from 0.14 to 0.77 and decreased in the following order: PL > PG > SS > PM > CP > FYM. The KCl-extracted inorganic N, pepsin-extracted organic N and N mineralized during 42 days gave a positive relationship with REo, and the C:N ratio a negative relationship with REo. Among the different N availability laboratory indices, pepsin extraction of organic N, C:N ratio and N mineralization can be recommended for determining mineralizable organic N in organic materials. KCl-extracted inorganic N proved to be a useful index for organic materials having a low inorganic N fraction. Thermal fractionation did not provide a suitable index of plant-available N in organic materials.  相似文献   
9.
A long‐term field experiment, conducted since 1962 in Gumpenstein (Austria) on a Dystric Cambisol, was used for the present investigation. We combined a physical fractionation procedure with the determination of natural abundance of 13C and FT‐IR spectroscopy to study the influence of fertilizer amendments (organic manure and mineral fertilizers) and management practices (fallow vs. cropped) on changes in organic carbon (OC) associated with different particle‐size fractions. The OC content in bulk soil decreased or was not affected by slurry+straw, PK, and NPK treatments in both fallow and cropped plots after 28 and 38 yr of treatment. However, OC in plots receiving organic manures increased depending on the quality of the organic manures applied. The ranking among the different treatments under both fallow and cropped plots was: animal manure (liquid) > animal manure (solid) > cattle slurry = slurry+straw = PK = NPK. Results showed that the two types of management practices, fallow (non‐tilled) vs. cropped (tilled) had effects on OC concentrations. Comparing the OC contribution of particle‐size fractions to the total OC amount revealed the following ranking: silt > clay > fine sand > coarse sand except in the plots receiving solid or liquid animal manure. Size fractions within treatments showed larger variations of 13C abundances than bulk samples between treatments. The natural abundances of 13C increased especially in cropped (and tilled) plots. It was shown by cluster analysis that FT‐IR spectra differentiated between the different treatments originating from different land management practices. The present study revealed that below‐ground C deposition by agricultural plants can hardly compensate the C losses due to tillage.  相似文献   
10.
 Gross rates of soil processes and microbial activity were measured in two grazed permanent pasture soils which had recently been amended with N fertilizer or dung. 15N studies of rates of soil organic matter turnover showed gross N mineralization was higher, and gross N immobilization was lower, in a long-term fertilized soil than in a soil which had never received fertilizer N. Net mineralization was also found to be higher in the fertilized soil: a consequence of the difference between the opposing N turnover processes of N mineralization and immobilization. In both soils without amendments the soil microbial biomass contents were similar, but biomass activity (specific respiration) was higher in the fertilized soil. Short-term manipulation of fertilizer N input, i.e. adding N to unfertilized soil, or witholding N from previously fertilized soil, for one growing season, did not affect gross mineralization, immobilization or biomass size and activity. Amendments of dung had little effect on gross mineralization, but there was an increase in immobilization in both soils. Total biomass also increased under dung in the unfertilized soil, but specific respiration was reduced, suggesting changes in the composition of the biomass. Dung had a direct effect on the microbial biomass by temporarily increasing available soil C. Prolonged input of fertilizer N increases soil C indirectly as a result of enhanced plant growth, the effect of which may not become evident within one seasonal cycle. Received: 18 December 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号