首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
林业   1篇
农作物   1篇
  2018年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The mucoadhesive Chitosan (CS) nanofibers as a drug delivery system were developed. Chitosan was modified via the immobilization of thiol groups from L-cysteine as a mucoadhesive reagent. The mucoadhesive properties of the chitosan nanofibers were evaluated by tensiometer set and via tensile studies. Drug and mucoadhesive agent loading lead to decrease diameters and increased porous of nanofibers. The release of Tetracycline (Tet) and Triamcinolone (Tri) were increased with increasing immersion time and it became constant at long immersion times. Mucoadhesion studies were done at pH 2–7 and in pH 6 maximum mucoadhesive properties observed. Release studies demonstrated a sustained release of both drug continued up to 48 hours. Microbial studies were performed on the nanofibers. The drug delivery system represented a novel tool for improve the therapeutic efficacy of various drugs that are poorly absorbed from the gastrointestinal tract. Also it is an efficient system for treatment of oral ulceration.  相似文献   
2.
This research work aimed at studying the effects of oleothermal modification of fir wood by using combined soybean oil with maleic anhydride (OHT–MA) to achieve lower treatment temperatures and enhance physico-mechanical properties. Wood blocks were oleothermally treated with soybean oil and OHT–MA at five different treatment temperatures (100, 120, 140, 160 and 180 °C) for three different holding times (30, 60 and 180 min). Afterward, physical and mechanical properties of the treated samples were determined, i.e., density, water absorption and volumetric swelling as the physical properties and bending strength, compression parallel to grain and impact load resistance as the mechanical properties. Results revealed increases in densities and reduction in water absorption as well as volumetric swelling of all treated samples. The mechanical properties were affected by OHT–MA treatment at different temperatures. Bending modulus of elasticity as well as compression parallel to grain was increased due to OHT–MA treatment. In addition, there was less reduction in impact load resistance of the treated samples. It was revealed that the OHT–MA enhanced wood properties at low treatment temperatures as well as shorter holding times.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号