首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   4篇
林业   14篇
  5篇
综合类   10篇
农作物   2篇
水产渔业   5篇
畜牧兽医   67篇
植物保护   6篇
  2021年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   11篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
  1973年   3篇
  1966年   1篇
  1963年   1篇
  1959年   1篇
  1957年   5篇
  1956年   1篇
  1955年   1篇
  1954年   2篇
排序方式: 共有109条查询结果,搜索用时 419 毫秒
1.
2.
Biogeochemical process models are increasingly employed to simulate current and future forest dynamics, but most simulate only a single canopy type. This limitation means that mixed stands, canopy succession and understory dynamics cannot be modeled, severe handicaps in many forests. The goals of this study were to develop a version of Biome-BGC that supported multiple, interacting vegetation types, and to assess its performance and limitations by comparing modeled results to published data from a 150-year boreal black spruce (Picea mariana (Mill.) BSP) chronosequence in northern Manitoba, Canada. Model data structures and logic were modified to support an arbitrary number of interacting vegetation types; an explicit height calculation was necessary to prioritize radiation and precipitation interception. Two vegetation types, evergreen needle-leaf and deciduous broadleaf, were modeled based on site-specific meteorological and physiological data. The new version of Biome-BGC reliably simulated observed changes in leaf area, net primary production and carbon stocks, and should be useful for modeling the dynamics of mixed-species stands and ecological succession. We discuss the strengths and limitations of Biome-BGC for this application, and note areas in which further work is necessary for reliable simulation of boreal biogeochemical cycling at a landscape scale.  相似文献   
3.
We quantified the contributions of root respiration (RC) and heterotrophic respiration to soil surface CO2 flux (RS) by comparing trenched and untrenched plots in well-drained and poorly drained stands of a black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Our objectives were to: (1) test different equations for modeling RS as a function of soil temperature; and (2) model annual RS and RC for the chronosequence from continuous soil temperature measurements. The choice of equation to model RS strongly affected annual RS and RC, with an Arrhenius-based model giving the best fit to the data, especially at low temperatures. Modeled values of annual RS were positively correlated with soil temperature at 2-cm depth and were affected by year of burn and trenching, but not by soil drainage. During the growing season, measured RC was low in May, peaked in late July and declined to low values by the end of the growing season. Annual RC was < 5% of RS in the recently burned stands, approximately 40% in the 21-year-old stands and 5-15% in the oldest (152-year-old) stands. Evidence suggests that RC may have been underestimated in the oldest stands, with residual root decay from trenching accounting for 5-10% of trenched plot RS at most sites.  相似文献   
4.
Whitehead D  Gower ST 《Tree physiology》2001,21(12-13):925-929
Measurements of the photosynthetic response to midsummer irradiance were made for 11 species representing the dominant trees, understory shrubs, herbaceous plants and moss species in an old black spruce (Picea mariana (Mill.) B.S.P.) boreal forest ecosystem. Maximum rates of photosynthesis per unit foliage area at saturating irradiance, A(max), were highest for aspen (Populus tremuloides Michx.), reaching 16 micromol m(-2) s(-1). For tamarack (Larix laricina (Du Roi) K. Kock) and P. mariana, Amax was only 2.6 and 1.8 micromol m(-2) s(-1), respectively. Values of A(max) for understory shrubs and herbaceous plants were clustered between 9 and 11 micromol m(-2) s(-1), whereas A(max) of feather moss (Pleurozium schreberi (Brid.) Mitt.) reached only 1.9 micromol m(-2) s(-1). No corrections were made for differences in shoot structure, but values of photosynthetic light-use efficiency were similar for most species (70-80 mmol CO2 mol(-1)); however, they were much lower for L. laricina and P. mariana (15 mmol CO2 mol(-1)) and much higher for P. schreberi (102 m;mol CO2 mol(-1)). There was a linear relationship between Amax and foliage nitrogen concentration on an area basis for the broad-leaved species in the canopy and understory, but the data for P. mariana, L. laricina and P. schreberi fell well below this line. We conclude that it is not possible to scale photosynthesis from leaves to the canopy in this ecosystem based on a single relationship between photosynthetic rate and foliage nitrogen concentration.  相似文献   
5.
Recently, isolation and in vitro culture of putative spermatogonial stem cells (SSCs) in the domestic cat have been conducted. However, the cellular niche conditions that facilitate the establishment and long‐term maintenance of feline SSCs (FSSCs) have not been described. Therefore, we investigated the type of feeder cells used to stimulate colony formation and growth of FSSCs among the various factors in the FSSC niche. Spermatogonial stem cells isolated from feline testes were cultured on mitotically inactivated testicular stromal cells (TSCs) derived from cats, dogs and mice, and mouse embryonic fibroblasts (MEFs). The formation and growth of colonies derived from SSCs cultured on each type of feeder cell were identified at passage 0, and the morphology, alkaline phosphatase (AP) activity and expression of SSC‐specific genes in surviving colonies were investigated at passage 4. Among these diverse feeder cells, TSCs from cat showed the greatest colony formation, growth and maintenance of FSSCs, and SSC colonies cultured by passage 4 showed a typical dome‐shaped morphology, AP activity and expression of SSC‐specific genes (NANOG, OCT4, SOX2 and CD9). Accordingly, these results demonstrate that feline TSCs could be used as feeder cells to support the establishment and maintenance of SSCs from domestic cats.  相似文献   
6.
7.
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号